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1 Introduction

tac_plus is a TACACS+ daemon. It provides Cisco Systems routers and access servers with authentication, authorisation and
accounting services.

This version is a major rewrite of the original Cisco source code. However, it’s outdated and unsupported. Feel encouraged to
use tac_plus-ng.

Key features include:

• NAS specific host keys, prompts, enable passwords

• NAS- and ACL-dependent group memberships

• Flexible external backends for user profiles (e.g. via PERL scripts or C; LDAP (including ActiveDirectory), RADIUS and
others are included)

• Connection multiplexing (multiple concurrent NAS clients per process)

• Session multiplexing (multiple concurrent sessions per connection, single-connection)

• Scalable, no limit on users, clients or servers.

• CLI context aware. At the time of writing this, no other TACACS+ daemon is.

• Both IPv4 and IPv6 are fully supported.

• Implements and autodetects HAProxy protocol 2.

• Compliant to the original TACACS+ protocol specification (draft 1.78).

1.1 Download

You can download the source code from the GitHub repository at https://github.com/MarcJHuber/event-driven-servers/. On-line
documentation is available via https://projects.pro-bono-publico.de/event-driven-servers/doc/, too.

2 Definitions and Terms

The following chapters utilize a couple of terms that may need further explanation:

NAC A Network Access Client, e.g. the source host of a telnet connection.

NAS A Network Access Server, e.g. a Cisco box, or any other client which makes TACACS+
authentication and authorization requests, or generates TACACS+ accounting packets.

Daemon A program which services network requests for authentication and authorization, verifies
identities, grants or denies authorizations, and logs accounting records.

AV pairs Strings of text in the form attribute=value, sent between a NAS and a TACACS+
daemon as part of the TACACS+ protocol.

Since a NAS is sometimes referred to as a server, and a daemon is also often referred to as a server, the term server has been
avoided here in favor of the less ambiguous terms NAS and Daemon.

https://projects.pro-bono-publico.de/event-driven-servers/doc/tac_plus-ng.html
https://www.haproxy.org/
https://github.com/MarcJHuber/event-driven-servers/
https://projects.pro-bono-publico.de/event-driven-servers/doc/
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2.1 TACACS, XTACACS and TACACS+

As a tidbit of historical value, there are about three versions of authentication protocol that people may refer to as TACACS:

The first is ordinary TACACS, which was the first one offered on Cisco boxes and has been in use for many years. The second is
an extension to the first, commonly called Extended TACACS or XTACACS, introduced in 1990. Both are UDP based services.

The third one, and that’s the version virtually everybody uses right now, is TACACS+ or tac_plus, which is what is documented
here. TACACS+ is based on TCP and as such not compatible with any previous versions of TACACS.

Apparently, at least one vendor did implement TACACS+, but refers to it as HWTACACS. Chances are that there are no technical
(but possibly marketing or legal) reasons behind that. Documentation is scarce.

3 Operation

This section gives a brief and basic overview on how to run tac_plus.

In earlier versions, tac_plus wasn’t a standalone program but had to be invoked by spawnd. This has changed, as spawnd func-
tionality is now part of the tac_plus binary. However, using a dedicated spawnd process is still possible and, more importantly,
the spawnd configuration options and documentation remain valid.

tac_plus may use auxiliary MAVIS backend modules for authentication and authorization.

3.1 Command line syntax

The only mandatory argument is the path to the configuration file:

tac_plus [ -P ] [ -d level ] [ -i child_id ] configuration-file [ id ]

If the program was compiled with CURL support, configuration-file may be an URL.

Keep the -P option in mind - it is imperative that the configuration file supplied is syntactically correct, as the daemon won’t
start if there are any parsing errors at start-up.

The -d switch enables debugging. You most likely don’t want to use this. Read the source if you need to.

The -i option is only honoured if the build-in spawnd functionality is used. In that case, it selects the configuration ID for
tac_plus, while the optional last argument id sets the ID of the spawnd configuration section.

3.2 Signals

Both the master (that’s the process running the spawnd code) and the child processes (running the tac_plus code) intercept the
SIGHUP signal:

• The master process will restart upon reception of SIGHUP, re-reading the configuration file. The child processes will recognize
that the master process is no longer available. It will continue to serve the existing connections and terminate when idle.

• If SIGHUP is sent to a child process it will stop accepting new connections from its master process. It will continue to serve
the existing connections and terminate when idle.

Sending SIGUSR1 to the master process will cause it to abandon existing child processes (these will continue to serve the
existing connections only) and start new child processes.
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3.3 Event mechanism selection

Several level-triggered event mechanisms are supported. By default, the one best suited for your operating system will be used.
However, you may set the environment variable IO_POLL_MECHANISM to select a specific one.

The following event mechanisms are supported (in order of preference):

• port (Sun Solaris 10 and higher only, IO_POLL_MECHANISM=32)

• kqueue (*BSD and Darwin only, IO_POLL_MECHANISM=1)

• /dev/poll (Sun Solaris only, IO_POLL_MECHANISM=2)

• epoll (Linux only, IO_POLL_MECHANISM=4)

• poll (IO_POLL_MECHANISM=8)

• select (IO_POLL_MECHANISM=16)

Environment variables can be set in the configuration file at top-level:

setenv IO_POLL_MECHANISM = 4

3.4 Sample Configuration

A single configuration file is sufficient for configuring spawnd, tac_plus and the MAVIS authentication and authorization back-
ends.

The following spawnd configuration stanza accepts connections on TCP ports 49 and 4949 and forwards these to one of the
tac_plus processes. The tac_plus configuration configures a couple of user groups, has one single user defined and relies on the
MAVIS backend for additional users.

#!/usr/local/sbin/tac_plus
id = spawnd {

listen = { port = 49 }
listen = { port = 4949 }
#
# See the spawnd configuration guide for further configuration options.

}

id = tac_plus {
accounting log = /var/log/tac_plus/%Y/%m/%d.log
retire limit = 1000
mavis module = external {

exec = /usr/local/lib/mavis_tacplus_passwd.pl
# see the MAVIS configuration manual for more options and other modules

}
login backend = mavis

host = world {
welcome banner = "\nHitherto shalt thou come, but no further. (Job 38.11)\n\n"
key = QaWsEdRfTgY
enable 15 = clear test
address = 0.0.0.0/0

}

group = readwrite {
default service = permit
service = shell {

default command = permit
set priv-lvl = 15
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}
}

group = getconfig {
default service = permit
service = shell {

set autocmd = "sho run"
set priv-lvl = 15

}
}

user = marc {
login = crypt $1$xxxxxxxx$hDZPHghXe8XvoHeFdqUwm/
member = readwrite@world
member = getconfig@192.168.0.0/16

}
}

3.5 Sample Configuration with Realms

Here’s a more sophisticated example, acknowledging that most folks prefer to look at sample configurations instead of actually
reading documentation.

syslog default = deny

id = spawnd {
# Really, have a look at the spawnd configuration. There are
# lots of useful options.

listen = {
port = 4949

}

listen = {
port = 4950 realm = core

}
}

id = tac_plus {
client realm = adminRealm # Could specify these
aaa realm = local # at host level, too.
dns reverse-lookup = no

realm = adminRealm {
host = myPCs {

address = 192.0.2.8,192.0.2.24/29
}

}

realm = customerRealm {
dns reverse-lookup = yes
host = customer {

address = 172.16.0.0/12
}

}

# This will be placed in the "default" realm
host = cpeRouters {
address = 0.0.0.0/0
key = myKey
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welcome banner = "Welcome C=%%C Time=%c\n"
client realm = customerRealm
aaa realm = ldapRealm

}

# And this one in the "core" realm. Could write this as
# realm = ... { host = ... }, too.
host realm core = coreRouters {
address = 0.0.0.0/0
key = CoreKey
client realm = adminRealm
aaa realm = unixRealm

}

realm = unixRealm {
mavis module = groups {

resolve gids = yes
groups filter = /^(guest|staff)$/
script out = {

# copy the already filtered UNIX group access list to TACMEMBER
eval $GIDS =~ /^(.*)$/
set $TACMEMBER = $1

}
}

mavis module = external {
exec = /usr/local/sbin/pammavis "pammavis" "-s" "mavis"

}

user backend = mavis
login backend = mavis chpass

group = staff {
service = shell {

set priv-lvl = 15
script = {
if (cmd == "") permit # shell startup
if (cmd =~ /^configure/) permit

}
message debug = "author ’%c %a’"
cmd = show { permit .* }

}
}

group = guest {
member = staff
service = shell {

cmd = show { permit .* }
message deny = "denied by t+"

}
}

}

realm = ldapRealm {
mavis module = external {

exec = /usr/local/lib/mavis/mavis_tacplus_ads.pl
setenv USE_TLS = 0
setenv LDAP_HOSTS = "192.0.2.193"
setenv LDAP_SCOPE = sub
setenv LDAP_BASE = "dc=example,dc=com"

}
user backend = mavis
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login backend = mavis
pap backend = mavis

}

realm = localRealm {
user = marc {

password = clear marc
service = shell {

default command = permit
}

}
}

}

4 Configuration Syntax

The configuration stanzas covered by the following sections are to be placed between

id = tac_plus = {

and the corresponding

}

Comments in Configuration Files
Comments can appear anywhere in the configuration file, starting with the # character and extending to the end of the current
line. Should you need to disable this special meaning of the # character, e.g. if you have a password containing a # character,
simply enclose the string containing it within double quotes.

Including Files
Configuration files may refer to other configuration files:
include = file
will read and parse file. Shell wildcard patterns are expanded by glob(3). The include statement will be accepted virtually
everywhere (but not in comments or textual strings).

The recommended order for writing a configuration file is

1. global definitions

2. hosts

3. timespecs

4. acls

5. groups

6. users

The reasoning behind that non-random order is that parts of the configuration may use other parts, and these need to exist before
being used.
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id = tac_plus

{ GlobalAttr

TimespecDecl

ACLDecl

RealmDecl

RealmAttr

}

Railroad diagram: TacPlusConfig

4.1 Global options

The global configuration section may contain the following configuration directives, plus the realm options detailed in the next
section. realm options defined at global level will implicitely be assigned to the default realm and will be inherited to subsequently
defined realms.

4.1.1 Limits and timeouts

A number of global limits and timeouts may be specified exclusively at global level:

• retire limit = n

The particular daemon instance will terminate after processing n requests. The spawnd instance will spawn a new instance if
necessary.

Default: unset

• retire timeout = s

The particular daemon instance will terminate after s seconds. spawnd will spawn a new instance if necessary.

Default: unset

Time units
Appending s, m, h or d to any timeout value will scale the value as expected.

4.1.2 DNS

tac_plus can make use of static and, if compiled with c-ares support, of dynamic DNS entries. The relevant global configuration
options at global level are:

• dns cleanup period = s

Remove unused dynamic DNS data from cache after s seconds. (Default: 8 hours.)

• dns preload address address = hostname

Preload DNS cache with address-to-hostname mapping.

• dns preload file = filename

Preload DNS cache with address-to-hostname mappings from filename (see your hosts(5) manpage for syntax).

Example:

https://c-ares.org/
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dns preload address 1.2.3.4 = router.example.com
dns preload file = /etc/hosts

host = router.example.com {
# "address = 1.2.3.4" is actually implied
key = mykey

}

4.1.3 Process-specific options

There are a couple of process-specific options available:

• userid = uid

Run daemon under user id uid. This option is deprecated.

• groupid = gid

Run daemon under group id gid. This option is deprecated.

• working directory = directory

Changes the current working directory to directory.

• coredump directory = directory

Dump cores to directory. You really shouldn’t need this.

• accept haproxy = ( yes | no )

Enables HAProxy support. Disabled by default.

4.1.4 Railroad Diagrams

umask = umask

syslog facility

severity

= string

userid = userID

groupid = groupID

working directory = directory

coredump directory = directory

retire limit = count

seconds = seconds

time zone = timeZone

dns cleanup period = seconds

prefetch address CIDR = string

prefetch file = fileName

default realm = realmName

accept haproxy = yes

no

Railroad diagram: GlobalDecl
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4.2 Realms

Historically, realms were introduced in listen directives in the spawnd configuration section:

spawnd = {
listen = { port = 49 }
listen = { port = 3939 }
listen = { port = 4949 realm = oneRealm}
listen = { port = 5959 realm = otherRealm}

}

Default Realm
If spawnd doesn’t supply a realm name, then tac_plus will fall back to using the realm named default, which contains all
the realm specific directives not defined in realm context.
You can select the actual default realm with

default realm = RealmName

at global configuration level.

The main task of the spawnd component is to accept a connection and forward it, including the associated realm, to the tac_plus
process. tac_plus then uses that realm to assign the correct host object hierarchy to the connection.

The prefered syntax to use (and define) realms is

realm = realmName { ... }

at global configuration level. Realms may include hosts, users, groups, MAVIS configurations and various other configuration
options. Realms and hosts may refer to other realms for authentication.

More precisely, the three uses for realms are:

• Authentication, Authorization and Accounting Realms

Everything related to users and user groups, including logging, is configured in an AAA realm. The AAA realm to use may be
selected at global, realm and host level, using the

aaa realm = realmName

directive.

• Network Access Server Realms

This is the realm where the NAS host object was defined. Hosts and NAS specific parameters are defined in this realms context.

• Network Acccess Client Realms

NAC specific parameters may be retrieved from a NAC realm, which may be spefified at global, realm and host level:

nac realm = realmName

This may for example be used to enable DNS reverse lookups for remote clients on a per-realm basis.

Defining realms is optional. As mentioned before, realm options defined at top-level will be assigned to the default realm,
which is actually the default for both the aaa and nac realms.

4.2.1 Railroad Diagrams

realm = realmName {

RealmAttr

}

Railroad diagram: RealmDecl
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4.3 Realm options

The following options may be specified at realm and global level:

4.3.1 Logging

The software provides logs for

• Authentication

authentication log = log_destination

• Authorization

authorization log = log_destination

• Accounting

accounting log = log_destination

Logs may be written to multiple destinations:

authentication log = log_1
authentication log = log_2

...
authentication log = log_n

Valid log destinations are:

• Files

For logging to plain disk files fcntl(2) file locking is used, so it is recommended that file resides on a local filesystem.
Although fcntl locking over NFS is supported on some Unix implementations, it is notoriously unreliable, and eVen if your
implementation is reliable, locking is likely to be extremely inefficient over NFS.

If the underlying file system supports atomic appends, fcntl(2) file locking may not be necessary. Prepending the log
destination with a > character will turn file locking off and switch log file handling to synchronous mode.

# async
authentication log = /var/log/tac_plus/access1.log
# sync:
authentication log = ">/var/log/tac_plus/access2.log"

• Commands

If the log destination starts with a | character a shell running the remainder of the destination argument will be invoked, and
log messages will be feeded to that shell on standard input. Example:

authentication log = "|exec /usr/bin/logger"

(The exec isn’t strictly necessary here, but avoids keeping an otherwise idle shell process around.)

• Syslog

Logging to syslogd(8) can be enabled by either using the syslog keyword

accounting log = syslog

(which will use your systems syslog(3) function for logging, or by utilizing

accounting log = Address[:UDPPort]
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syntax.

Moreover, named log destinations may be used, e.g.:

log = mylog {
destination = 169.254.0.23 # UDP syslog
# or one of the following:
# destination = [fe80::123:4567:89ab:cdef]:514 # IPv6 UDP, with non-standard UDP port
# destination = "/tmp/x.log" # plain file
# destination = ">/tmp/x.log" # plain file
# destination = "|my_script.sh" # script
# destination = syslog # syslog(3)
#
syslog compliance = RFC3164 # this is the default for UDP syslog
# syslog compliance = RFC5424 # this loosely matches the new syslog standard
syslog facility = MAIL # sets log facility
syslog severity = DEBUG # sets log severity
log separator = "|" # The actual default for syslog, for others it’s "\t"

}
authentication log = mylog
accounting log = mylog
authorization log = mylog

Syslog
Logging to syslogd(8) can be disabled using

syslog default = deny

Log destinations may contain strftime(3)-style character sequences, e.g.:

authorization log = /var/log/tac_plus/%Y/%m/%d.auth

to automate time-based log file switching. By default, the daemon will use your local time zone for time conversion. You can
switch to a different one by using the time zone option (see below).

There are a couple of other configuration options that may be useful:

• date format = string

This defines a format string for date (and time) representation in subsequentially defined log files. Default:

date format = "%Y-%m-%d %H:%M:%S %z"

• log separator = string

This defines the CSV separator string for log entries in subsequentially defined log files. Default:

log separator = "\t"

• time zone = time-zone

By default, the daemon uses your local system time zone to convert the internal system time to calendar time. This option sets
the TZ environment variable to the time-zone argument. See your local tzset man page for details.

• umask = mode

This sets the file creation mode mask. Example:

umask = 0640

• authorization log group = ( yes | no )

Set this to have the name of the last matching group appended to the username in authorization logs (separated by a single ’/’
character).



TACACS+ 12 / 79

4.3.1.1 Accounting

All accounting records are written, as text, to the file (or command) specified with the accounting log directive.

Accounting records are text lines containing tab-separated fields. The first 6 fields are always the same. These are:

• timestamp

• NAS address

• username

• port

• NAC address

• record type

Following these, a variable number of fields are written, depending on the accounting record type. All are of the form attribute=value.
There will always be a task_id field.

Current attributes are:

unknown service start_time port elapsed_time status priv_level cmd protocol cmd-arg bytes_in
bytes_out paks_in paks_out address task_id callback-dialstring nocallback-verify callback-line
callback-rotary

More may be added over time.

Example records (lines wrapped for legibility) are thus:

1995-07-13 13:35:28 -0500 172.16.1.4 chein tty5 198.51.100.141
stop task_id=12028 service=exec port=5 elapsed_time=875

1995-07-13 13:37:04 -0500 172.16.1.4 lol tty18 198.51.100.129
stop task_id=11613 service=exec port=18 elapsed_time=909

1995-07-13 14:09:02 -0500 172.16.1.4 billw tty18 198.51.100.152
start task_id=17150 service=exec port=18

1995-07-13 14:09:02 -0500 172.16.1.4 billw tty18 198.51.100.152
start task_id=17150 service=exec port=18

Elapsed time is in seconds, and is the field most people are usually interested in.

On the NAS, to get accounting records equivalent to previous versions of tacacs, the following is sufficient. "Stop" records
contain elapsed time for connections and exec sessions.

aaa accounting system default start-stop group tacacs+
aaa accounting exec default start-stop group tacacs+
aaa accounting exec acctlist stop-only group tacacs+
aaa accounting commands 15 acctlist start-stop group tacacs+
aaa accounting network acctlist stop-only group tacacs+

line XX
accounting commands 15 acctlist

4.3.1.2 Spoofing Syslog Packets

The script tacspooflog.pl (which comes bundled with the distribution) may be used to make syslogd believe that logs
come straight from your router, not from tac_plus.

E.g., if your syslogd is listening on 127.0.0.1, you may try:

access log = "|exec sudo /path/to/tacspooflog.pl 127.0.0.1"

This may be useful if you want to keep logs in a common place.

Please note that this will work for IPv4 only.
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4.3.2 Limits and timeouts

A number of global limits and timeouts may be specified at realm and global level:

• connection timeout = s

Terminate a connection to a NAS after an idle period of at least s seconds.

Default: 600

• context timeout = s

Clears context cache entries after s seconds of inactivity. Default: 3600 seconds.

Default: 3600

• warning period = d

Set warning period for password expiry to d days.

Default: 14

4.3.2.1 DNS

tac_plus can make use of static and, if compiled with c-ares support, of dynamic DNS entries. The relevant realm configura-
tion options are:

• dns reverse-lookup = ( yes | no )

This sets the global default for DNS reverse-lookups (Default: no).

• dns timeout = Seconds

This directive specifies the maximum time to wait when doing DNS reverse lookups. (Default: 0).

4.3.2.2 Authentication

• password ( max-attempts = integer | backoff = seconds | acl = acl )

backoff sets a backoff time for failed authentications. The daemon will wait for seconds seconds before returning a final
authentication failure (password incorrect) message.

The max-attempts parameter limits the number of Password: prompts per TACACS+ session at login. It currently
defaults to 1, meaning that a typical login sequence with bad passwords would look like:

> telnet 10.0.0.2
Trying 10.0.0.2...
Connected to 10.0.0.2.
Escape character is ’^]’.

Welcome. Authorized Use Only.

Username: admin
Password: ***
Password incorrect.

Welcome. Authorized Use Only.

Username: admin
Password: ****
Password incorrect.

Welcome. Authorized Use Only.
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Username: admin
Password: *
Password incorrect.

Connection closed by foreign host.

Using, for example,

password max-attempts = 3

(the actual default in earlier versions was 4) would change this dialog to:

> telnet 10.0.0.2
Trying 10.0.0.2...
Connected to 10.0.0.2.
Escape character is ’^]’.

Welcome. Authorized Use Only.

Username: admin
Password: ***

Password incorrect.
Password: ****

Password incorrect.
Password: *****

Password incorrect. Go away.

Welcome. Authorized Use Only.

Username:

It’s at the NAS’s discretion to restart the authentication dialog with a new TACACS+ session or to close the (Telnet/SSH/...)
session to the user if TACACS+ authentication fails.

password acl may be used to perform simple compliance checks on user passwords. For example, to enforce a minimum
password length of 6 characters you may try

acl script = password-compliance {
if (password =~ /^....../)

permit
deny

}
password acl = password-compliance

Authentications using passwords that fail the check will be rejected.

• anonymous-enable = ( permit | deny )

Several broken TACACS+ implementations send no or an invalid username in enable packets. Setting this option to deny
tries to enforce user authentication before enabling. This option defaults to permit.

Alas, this may or may not work. In theory, the enable dialog should look somewhat like:

Router> enable
Username: me
Password: *******
Enable Password: **********
Router#

However, some implementations may resend the user password at the Enable Password: prompt. In that case you’ve got
only two options: Either use
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enable = login

at user group level, which will omit the secondary password query and let the user enable with his login password, or permit
anonymous enable (which is disabled by default) with

anonymous-enable = permit

(globally, or at host level) and use enable passwords defined at host level.

• augmented-enable = ( permit | deny )

For TACACS+ client implementations that send $enable$ instead of the real username in an enable request, this will permit
user specific authentication using a concatenation of username and login password, separated with a single space character:

> enable
Password: myusername mypassword
#

enable [ level ] = login needs to be set in the users’ profile for this option to take effect.

Default: augmented-enable = deny

augmented-enable will only take effect if the NAS tries to authenticate a username matching the regex

^\$enab..\$$

(e.g.: $enable$, $enab15$). That matching criteria may be changed using an ACL:

acl script = custom_enable_acl { if (user =~ ^demo$) permit deny }
enable user acl = custom_enable_acl

4.3.2.3 Miscellaneanous

• single-connection [ may-close ] = ( yes | no )

This directive may be used to permit or deny the single-connection feature. The may-close keyword tells the daemon to
close a connection if it’s unused (default: disabled). This directive may be overridden at host object level.

• skip conflicting groups = ( yes | no )

If this is set, group conflicts will be ignored in member directives. The first group defined for a given NAS wins.

• skip missing groups = ( yes | no )

If this is set, non-existing groups will be ignored in member directives.

• client realm = realm

Lookup NAC parameters in realm realm instead of using the default one.

4.3.2.4 User backend options

These options are relevant for configuring the MAVIS user backend:

• aaa realm = realmName

Use the aaa configuration (users, groups, mavis, ...) from realm realm instead of the default one.

• group realm = realmName

Use the group configuration from realm realm instead of the default (or aaa) realm one.

• pap password [ default ] = ( login | pap )

When set to login, the PAP password default for new users will be set to use the login password.
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• pap password mapping = ( login | pap )

When set to login, PAP authentication requests will be mapped to ASCII Login requests. You may wish to uses this for
NEXUS devices.

May be overridden at host level.

• user backend = mavis

Get user data from the MAVIS backend. Without that directive, only locally defined users will be available and the MAVIS
backend may be used for authenticating known users (with password = mavis or simlar) only.

• pap backend = mavis [ prefetch ]

Verify PAP passwords using the MAVIS backend. This needs to be set to either mavis or prefetch in order to authenticate
PAP requests using the MAVIS backend. If unset, the PAP password from the users’ profile will be used.

If prefetch is specified, the daemon will first retrieve the users’ profile from the backend and then authenticate the user
based on information eventually found there.

This directive implies user backend = mavis.

• login backend = mavis [ prefetch ] [ chalresp [ noecho ] ] [ chpass ]

Verify Login passwords using the MAVIS backend. This needs to be set to either mavis or prefetch in order to authenticate
login requests using the MAVIS backend. If unset, the login password from the users’ profile will be used.

If prefetch is specified, the daemon will first retrieve the users’ profile from the backend and then authenticate the user
based on information eventually found there.

This directive implies user backend = mavis.

For use with OPIE-enabled MAVIS modules, add the chalresp keyword (and, optionally, add noecho, unless you want the
typed-in response to display on the screen). Example:

login backend = mavis chalresp noecho

For non-local users, if the chpass attribute is set and the user provides an empty password at login, the user is given the
option to change his password. This requires appropriate support in the MAVIS backend modules.

• mavis module = module { ... }

Load MAVIS module module. See the MAVIS documentation for configuration guidance.

• mavis path = path

Add path to the search-path for MAVIS modules.

• mavis cache timeout = s

Cache MAVIS authentication data for s seconds. If s is set to a value smaller than 11, the dynamic user object is valid for the
current TACACS+ session only. Default is 120 seconds.

• mavis noauthcache

Disables password caching for MAVIS modules.

• mavis user filter = [ not ] acl

Query MAVIS user backend only if acl matches. Defaults to:

acl script = __internal__username_acl__ { if (user =~ "[]<>/()|=[]+") deny permit }
mavis user filter = __internal__username_acl__
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4.3.2.5 Railroad Diagrams

MavisDecl

LogDecl

HostDecl

GroupDecl

UserDecl

authentication

authorization

accounting

log = fileName

logName

syslog

connection timeout = seconds

context timeout = seconds

warning period = days

single-connect = yes

no

dns reverse-lookup = yes

no

timeout = seconds

skip conflicting

missing

groups = yes

no

mavis cache timeout = seconds

date format = string

log separator = string

client realm = realmName

RealmAttrAuthen

Debug

Railroad diagram: RealmAttr
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aaa realm = realmName

authentication-fallback = permit

deny

period = seconds

anonymous-enable = yes

no

augmented-enable = yes

no

group realm = realmName

password max-attempts = count

backoff = seconds

acl = acl

login backend = mavis prefetch

chalresp noecho

chpass

pap backend = mavis

pap password default

mapping

= login

pap

user backend = mavis prefetch

Railroad diagram: RealmAttrAuthen

4.3.3 Hosts

The daemon will talk to known NAS addresses only. Connections from unknown addresses will be rejected.

If you want tac_plus to encrypt its packets (and you almost certainly do want this, as there can be usernames and passwords
contained in there), then you’ll have to specify an (non-empty) encryption key. The identical key must also be configured on any
NAS which communicates with tac_plus.

To specify a global key, use a statement similar to

host = 0.0.0.0/0 {
key = "your key here"

}

or, alternatively,

host = world {
key = "your key here"
address = 0.0.0.0/0

}

(where world is not a keyword, but just some arbitrary character string).
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Double Quotes
You only need double quotes on the daemon if your key contains spaces. Confusingly, even if your key does contain spaces,
you should never use double quotes when you configure the matching key on the NAS.
The daemon will reject connections from hosts that have no encryption key defined.
Double quotes within double-quoted strings may be escaped using the backslash character \ (which can be escaped by itself),
e.g.:

key = "quo\\te me\"."

translates to the ASCII sequence

quo\te me".

Any CIDR range within a host definition needs to to be unique, and the most specific definition will match. The requirement for
unambiguousness is quite simply based on the fact that certain host object attributes (key, prompt, enable passwords) may only
exist once.

On the NAS, you also need to configure the same key. Do this by issuing:

aaa new-model
tacacs-server host 192.168.0.1 single-connection key your key here

The optional single-connection parameter specifies that multiple sessions may use the same TCP/IP connection to the
server.

Generally, the syntax for host declarations conforms to

host = [ realm realm ] name_or_ip-range { key-value pairs }

The optional realm tells the daemon to use the host definition for connections associated with a corresponding spawnd or
client realm only. For example,

id = spawnd {
listen = { port = 49 }
listen = { port = 4949 realm = space }

}

id = tac_plus {
host = earth { address = ::/0 ... }
host realm space = mars { address = ::/0 ... }
group = admin { ... }
group = alien { ... }
user = marc { member = admin@earth member = alien@mars }

}

makes group membership dependent on the address and/or port the NAS uses to contact the TACACS+ server. User marc will
be a member of group admin for network access servers connecting via port 49, and member of alien for those using port
4949.

In most cases, hosts can be refered to either by IP address or by name.

The key-value pairs permitted in host sections of the configuration file are explained below.

• key [ warn [ ( YYYY-MM-DD | s ) ] = string

This sets the key used for encrypting the communication between server and NAS. Multiple keys may be set, making key
migration from one key to another pretty easy. If the warn keyword is specified, a warning message is logged when a NAS
actually uses the key. Optionally, the warn keyword accepts a date argument that specifies when the warnings should start to
appear in the logs.

During debugging, it may be convenient to temporarily switch off encryption by using an empty key:
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key = ""

Be careful to remember to switch encryption back on again after you’ve finished debugging.

• usage = ( all | any | client | server | group-membership| none )

If set to client or none, TACACS+ session requests that originate from addresses matching the host object will be re-
jected. Likewise, if set to server or none, logins that originate from addresses matching the host object will be refused. If
group-membership is set, the host definition may be used for group membership assignments only.

This setting is inherited from a supernet to its subnets and defaults to any.

Realms
You can combine usage with realms to strictly separate client and server host definitions:

# A "clients"-realm that summarizes valid client addresses for authentication:
realm = clients {

host = ::0/0 { usage = none }
host = 172.17.2.0/24 { usage = clients }

}

# Use the "clients" realm for looking up NACs:
client realm = clients # This is the global definition, but ...

# ... the "client realm" setting can be used on a per-host basis, too:
host = router { ... client realm = clients ... }

• inherit = ( yes | no )

If set to no, the current host declaration won’t inherit configuration snippets (e.g.: key, enable passwords) from its supernet.
Default is yes.

• name = string

Assigns the name string to the host object. This, combined with the address keyword, may be used to form host groups.
Don’t use this attribute if you’ve already assigned a name in the initial host = statement, and take care to define hosts before
users and groups, or group membership assignments may fail, possibly silently.

• address = cidr

Adds the address range specified by cidr to the current host definition.

internetAddress / maskLen

internetMask

Railroad diagram: CIDR

• address file = file

Add the addresses from file to the current host definition. Shell wildcard patterns are expanded by glob(3).

• client realm = realm

Lookup NAC parameters in realm realm instead of using the default one.

• dns reverse-lookup = ( yes | no )

This directive enables or disables DNS reverse-lookups for the corresponding hosts.

• dns timeout = Seconds

This directive specifies the maximum time to wait when doing DNS reverse lookups. (Default: 0).
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• single-connection ( may-close ) = ( yes | no )

This directive may be used to permit or deny the single-connection feature for a particular host object. The may-close
keyword tells the daemon to close the connection if it’s unused.

Caveat Emptor
There’s a slight chance that single-connection doesn’t work as expected. The single-connection implementation in your router
or even the one implemented in this daemon (or possibly both) may be buggy. If you’re noticing weird AAA behaviour that
can’t be explained otherwise, then try disabling single-connection on the router.

• template = ( address | name )

This uses part of an existing host definition for address or name as template for the current host declaration. Only banners,
key, enable passwords and content are copied, and no recursive lookups take place.

4.3.3.1 Timeouts

The connection timeout may be specified:

• connection timeout = s

Terminate a connection to this NAS after an idle period of at least s seconds. Defaults to the global option.

4.3.3.2 Authentication

The following authentication related directives are available at host object level:

• aaa realm = realmName

Use the aaa configuration (users, groups, mavis, ...) from realm realm instead of the default one.

• access acl = ( [ permit ] | deny ) [ not ] acl

Authentication requests not matching this directive will be rejected.

• password ( max-attempts = integer | backoff = seconds )

The max-attempts option sets the maximum number of Password: prompts per session. Likewise, backoff specifies
the (host-specific) delay before returning a Password incorrect. message and closing the session.

Setting these parameters here overrides the corresponding global options, which come with a more exhaustive explanation.

backoff can be specified for both NAC and NAS host objects. If both are given, the smaller one wins.

• pap password mapping = ( login | pap )

When set to login, PAP authentication requests will be mapped to ASCII Login requests. You may wish to uses this for
NEXUS devices.

• default user = name

This directive sets a default user name for connections sourced from hosts matching this host object. For example:

host = nms { address = 1.2.3.4 user = nmsuser }

will tell the daemon not to query for the user name for connections coming from 1.2.3.4, but to use nmsuser instead.

Use this option with care. It may come handy while transitioning to a TACACS+ environment, but has several severe implica-
tions, the first one being that the router has no idea about the username, which implies that authorization via TACACS+ won’t
work.

• default group = name

For users without any group membership this directive may be used to assign one; it’s used for connections originating from
this host object. For example, you can deny access to user without group membership by using something like that:
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host = ... { default group = no_login }
acl script = no_login { deny }
group = no_login { acl = no_login }

• enable [ level ] = ( permit | deny | login | ( clear | crypt) password )

This directive may be used to set host specific enable passwords, to use the login password, or to permit (without password) or
refuse any enable attempt. level defaults to 15.

Enable passwords specified at host level have a lower precedence as those defined at user or group level.

Password Hashes
You can use the openssl passwd utility to compute password hashes. For example,

openssl passwd -1 clear_text_password

returns a MD5 hash.

You can enable via TACACS+ by configuring on the NAS:

aaa authentication enable default group tacacs+ enable

• anonymous-enable = ( permit | deny )

Several broken TACACS+ implementations send no or an invalid username in enable packets. Setting this option to deny
enforces user authentication before enabling. Setting this option here has precedence over the global option.

• augmented-enable = ( permit | deny )

For TACACS+ client implementations that send $enable$ instead of the real username in an enable request, this will permit
user specific authentication using a concatenation of username and login password, separated with a single space character.
Setting this option here has precedence over the global option.

enable [ level ] = login needs to be set in the users’ profile for this option to take effect.

4.3.3.3 Authorization

The following authorization related directives are available at host object level:

• permit if-authenticated = ( yes | no )

This will cause authorization for users unknown to the daemon to succeed (e.g. when logging in locally while the daemon is
down or while initially configuring TACACS+ support and messing up).

4.3.3.4 Banners and Messages

The daemon allows for various banners to be diplayed to the user:

• welcome banner = string

• motd banner = string

• failed authentication banner = string

The failed authentication banner gets displayed upon final failure of an authentication attempt.

• reject banner = string

The reject banner gets displayed in place of the welcome message if a connection was rejected by an access ACL
defined at host, user or group level.

• message = string
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The time when those texts get displayed largely depends on the actual login method:

Context Directive Login via Telnet Login via SSHv1 Login via SSHv2

host welcome banner
displayed before
Username:

not displayed displayed before
Password:

host reject banner
displayed before
closing connection not displayed not displayed

host motd banner
displayed after
successful login not displayed displayed after

successful login

host
failed
authentication
banner

displayed after
unsuccessful login not displayed displayed after

unsuccessful login

user or group message
displayed after
motd banner

not displayed displayed after
motd banner

Neither the motd banner nor a message defined in the users’ profile will be displayed if hushlogin is set for the user.

Both banners and messages support strftime(3)-style conversion specifications, plus the following conversion sequences:

%%r router address
%%R router DNS name (fallback: IP address)
%%c client address
%%C client DNS name (fallback: IP address)
%%p router port
%%u username
%%% literal %

Example:

host = ... {
...
welcome banner = "Welcome. Today is %A.\n"
...

}

4.3.3.5 Workarounds for Client Bugs

The directive

client bug = value

may improve compatibility with clients that violate the protocol. Currently, the following bit values (yes, you can use bitwise
OR here) are recognized:

Bit Value Description
0 1 Ignore invalid AUTHEN/START data, seen with ZTE devices that put their MAC address there.
1 2 Accept version 1 for authorization and accounting packets, seen with Palo Alto systems.

Example:

host = ... {
...
client bug = 2
...

}
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4.3.3.6 Inheritance and Hosts

For host lookups, the daemon looks for the most specific host definition first. If that definition (or the requested value) doesn’t
exist, it looks for the next less-specific one. This process continues through the entire (IPv6) CIDR hierarchy, until a match is
found.

In other words: For host parameters, the most specific host definition with that parameter defined matches.

For example, if a host 192.168.1.15 connects to the server, the server needs to know which encryption key to use.

In IPv6-mapped CIDR notation (which the daemon uses internally), the IPv4 CIDR range

192.168.1.15/32

equals

0000:0000:0000:0000:0000:FFFF:C0A8:010F/128

The daemon will search for a key in the host definition for 192.168.1.15 and the (defined) supernets:

0000:0000:0000:0000:0000:FFFF:C0A8:010F/128
0000:0000:0000:0000:0000:FFFF:C0A8:010F/127
0000:0000:0000:0000:0000:FFFF:C0A8:010E/126
0000:0000:0000:0000:0000:FFFF:C0A8:010C/125
...
0000:0000:0000:0000:0000:FFFF:C000:0000/98
0000:0000:0000:0000:0000:FFFF:8000:0000/97
0000:0000:0000:0000:0000:FFFF:0000:0000/96
0000:0000:0000:0000:0000:FFFE:0000:0000/95
0000:0000:0000:0000:0000:FFFC:0000:0000/94
...
0000:0000:0000:0000:0000:0000:0000:0000/3
0000:0000:0000:0000:0000:0000:0000:0000/2
0000:0000:0000:0000:0000:0000:0000:0000/1
0000:0000:0000:0000:0000:0000:0000:0000/0

The first key found will be used, as it is the most specific one.

By default, welcome banner, motd banner, key, enable, anonymous-enable and content specifications are
inherited. Inheritance may be switched off for a host object:

inherit = no

4.3.3.7 Railroad Diagrams

host realm realmName = hostName { HostAttr }

Railroad diagram: HostDecl
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key warn yyyy-mm-dd

secondsSinceTheEpoch

= string

welcome banner fallback = string

motd banner = string

failed authentication banner = string

reject banner = string

access acl = permit

deny

not aclName

template = CIDR

hostName

address = CIDR

name = hostName

usage = any

all

client

server

none

group-membership

inherit = yes

no

dns reverse-lookup = yes

no

dns timeout = seconds

single-connect may-close = yes

no

connection timeout = seconds

aaa realm = realmName

authentication fallback = permit

deny

pap password mapping = login

pap

anonymous-enable = permit

deny

password max-attempts = count

backoff = seconds

default user = userName

default group = groupName

Debug

Railroad diagram: HostAttr



TACACS+ 26 / 79

enable level = clear cleartextPassword

7 obscuredPassword

crypt hashedPassword

login

permit

deny

Railroad diagram: EnableExpr

4.3.3.8 Example

host = 10.0.0.0/8 {
name = customer1
key = "your key here"
welcome banner = "\nHitherto shalt thou come, but no further. (Job 38.11)\n\n"
enable 15 = clear whatever

}

host = test123 {
address = 10.1.2.0/28
address = 10.12.1.30/28
address = 10.1.1.2
# key/banners/enable will be inherited from 10.0.0.0/8 by default,
# unless you specify "inherit = no"
address file = /some/path/test123.cidr
prompt = "\nGo away.\n\n"

}

4.3.4 Time Ranges

timespec objects may be used for time based profile assignments. Both cron and Taylor-UUCP syntax are supported; see
you local crontab(5) and/or UUCP man pages for details. Syntax:

timespec = timespec_name { "entry" [ ... ] }

Example:

# Working hours are from Mo-Fr from 9 to 16:59, and
# on Saturdays from 9 to 12:59:
timespec = workinghours {

"* 9-16 * * 1-5" # or: "* 9-16 * * Mon-Fri"
"* 9-12 * * 6" # or: "* 9-12 * * Sat"

}

timespec = sunday { "* * * * 0" }

timespec = example {
Wk2305-0855,Sa,Su2305-1655
Wk0905-2255,Su1705-2255
Any

}
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4.3.4.1 Railroad Diagrams

timespec = timespecName { cronStyleTime

uucpStyleTime

}

Railroad diagram: TimespecDecl

4.3.5 Access Control Lists

Access Control Lists (ACLs) consist of a series of Access Control Expressions (ACEs). An ACL does match whenever one of
its ACEs does. The ACEs that form an ACL are processed in sequence. An ACE matches if at least one of each defined subtype
expression type matches. ACEs named identially become part of an ACL with the same name.

Standard ACL syntax is:

acl = name { ( (nac ( = [ not ] (HostName|cidr) ) | ( [ dns ] regex = [ not ] NacRegex )) | (nas ( = [ not ] (HostName|cidr)
) | (regex = [ not ] NasRegex )) | (port regex = [ not ] PortRegex ) | (acl = [ not ] ACLName )* } (time = [ not ]
TimeSpecName )* }

Alternatively, scripting can be used:

acl script = name { ... }

The latter is detailled in the next chapter.

For standard ACL syntax, please have a look at the Railroad Diagrams below, and things will hopefully become much clearer.

ACEs will be evaluated in the order you’ve defined them. E.g.,

acl = myacl {
nac = 10.0.0.0/8
nac = 11.0.0.0/8
nas = somehostobjectname

}

acl = myacl {
time = workinghours

}

consists of two ACEs which form an ACL named "myacl". This ACL matches

• for clients in 10.0.0.0/8 or in 11.0.0.0/8, and servers part of somehostobjectname

• or simply during workinghours, no matter what clients or servers (or, for that matter, ports) are involved.

When using the dns keyword, NAC regex matching is done against the NACs DNS reverse mapping. This will only work if the
software was compiled with c-ares support. However, keep in mind that DNS isn’t necessarily trustworthy and lookups might
plain fail. Keep in mind that you’re best off enabling single-connection on your NAS. This allows the daemon to take
advantage of caching the reverse-mapping results.

4.3.5.1 Railroad Diagrams

acl = aclName permit

deny

{ AclExpr }

script = aclName { TacAction }

Railroad diagram: ACLDecl
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nac

nas

= not hostName

CIDR

dns regex = not regEx

nac

nas

==

!=

hostName

CIDR

dns =~

!~

regEx

nac-name

nas-name

regex = not regEx

nac-name

nas-name

=~

!~

regEx

port regex = not regEx

port =~

!~

regEx

realm regex = not regEx

realm =~

!~

regEx

time = not timeSpecName

time == != timeSpecName

acl = not aclName

acl ==

!=

aclName

Railroad diagram: ACLExpr

4.3.6 Rewriting User Names

This is experimental. It requires the binary to be built with PCRE v2 support (using the --with-pcre2 configure option).

A host may refer to a rewrite profile defined at realm level to substitute user names. The following sample code will map both
admin and root to marc, and convert all other usernames to lower-case:

rewrite = rewriteRule {
rewrite /^admin$/ marc
rewrite /^root$/ marc
rewrite /^.*$/ \L$0

}

host = ... {
...
rewrite user = rewriteRule
...

}

Please keep in mind that this is experimental ...
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4.3.7 Scripts

Scripts may currently be used for ACLs and in service declaration scope:

• acl script = acl_name { tac_action ... }

Example:

acl script = myacl123 {
if (nas == 1.2.3.4 || nac = SomeHostName || nac-dns =~ /\\.example\\.com$/) deny

}

• script = { tac_action ... }

Example:

user = joe {
service = shell {

script = {
if (cmd == "") permit # required for shell startup
if (cmd =~ /^(no\s)?shutdown\s/) permit }

}
}

4.3.7.1 Syntax

A script consists of a series of actions:

if TacCond TacAction else TacAction

context = value

message = value

permit

deny

return

{ TacAction }

Railroad diagram: TacAction

The actions return, permit and deny are final. At the end of a script, return is implied, at which the daemon continues
processing the configured cmd statements in shell context) or standard ACLs (in ACL context). The assignment operations
(context =, message =) do make sense in shell context only.

Setting the context variable makes sense in shell context only. See the example in the corresponding section.

Condition syntax is:
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! TacCond

( TacCond )

( TacCond &&

||

TacCond

)

cmd

context

port

user

password

==

!=

value

=~

!~

regEx

nac

nas

==

!=

hostName

nac

nas

nac-name

nas-name

nac-realm

nas-realm

aaa-realm

=~

!~

regEx

time ==

!=

timespecName

acl ==

!=

aclName

Railroad diagram: TacCond

cmd and context may be used in shell context only.

4.3.8 Users and Groups

User and group declarations are pretty similar. The major difference is, that groups are static, while user declarations may be
added at run-time via the MAVIS back-end.

A user may be member of a group (also known as role or profile). Actual group membership may depend on various factors, e.g.
the NAS the user is on, the NAC, or time ranges. Each group may in turn be member of another group and so on, ad infinitum.

The basic form of a user and group declarations is

user = username { ... }

or, respectively,

group = groupname { ... }

A user or group declaration may contain key-value pairs and service declarations.

4.3.8.1 User-only options

The following declarations are valid in user context only:

• login = ( ( clear | crypt ) password | mavis | permit | deny )

The login password authenticates shell log-ins to the server.
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login = crypt aFtFBT4e5muQE
login = clear Ci5c0

For crypt, DES- or MD5-hashed passwords may be used.

If the mavis keyword is used instead, the password will be looked up via the MAVIS backend. It will not be cached. This
functionality may be useful if you want to authenticate at external systems, despite static user declarations in the configuration
file.

• pap = ( ( clear | crypt ) password | mavis | permit | deny )

The pap authenticates PAP log-ins to the server. Just like with login, the password doesn’t need to be in clear text, but may
be DES (or MD5) hashed, or may be looked up via the MAVIS backend.

• arap = ( clearpassword | permit | deny )

For ARAP authentication, a cleartext password is required.

• chap = ( clearpassword | permit | deny )

For CHAP authentication, a cleartext password is required.

• ms-chap = ( clearpassword | permit | deny )

For MS-CHAP authentication, a cleartext password is required.

• password = ( clearpassword | permit | deny )

This directive sets all previously undefined passwords to the given cleartext password. This directive is retained for backwards
compatibility only, and usage is deprecated.

• password [ acl [ not ] acl ] { ... }

This directive allows specification of ACL-dependent passwords. Example:

acl jumpstation = { nac == 10.255.0.85 }

user = marc {
password acl jumpstation {

login = permit
pap = permit

}
password {

login = clear myLoginPassword
pap = clear myPapPassword

}
}

4.3.8.2 Group-only options

The following declarations are valid in group context only:

• template = groupname

This directive merges group definitions from groupname to the current group. Already existing definitions take precedence.

4.3.8.3 User and Group options

The following key-value pairs are valid in both user and group context:
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4.3.8.3.1 Limits

Validity of an user or group may be limited by various attributes:

• acl = ( [ permit ] | deny ) [ not ] acl

Validity of of a user or group profile may be restricted by ACLs. Multiple ACLs may be specified and are evaluated in order.

• valid from = ( YYYY-MM-DD | s )

The profile will be valid starting at the given date, which can be specified either in ISO8601 date format or as in seconds since
January 1, 1970, UTC.

• valid until = ( YYYY-MM-DD | s )

The profile will be invalid after the given date.

• client [ regex ] = ( deny | [ permit ] ) string [ , ... ]

As an alternative (or complement) to ACLs (see above), certain NAC based validity restrictions may be placed in a user (or
group) object directly. For example, to limit log-ins to a certain IP range or a host group:

client = 10.99.0.0/16
client = deny customer3

If the regex keyword is used, string is expected to be a valid regular expression. Regular expression search is expensive and
only used if the NAC address sent by the NAS ist not an IP address. Example for regular expression client matching:

# if compiled with PCRE:
client = deny /^async$/
client regex = /^console$/

# without PCRE:
client = deny "^async$"
client regex = "^console$"

Evaluation Order
Please keep in mind that ACLs are checked before client statements.
For client definitions, IP addresses are checked before regular expressions, while the latter are evaluated in the order
you’ve defined them.

• server = ( deny | [ permit ] ) string [ , ... ]

This limits user account validity to certain NAS addresses or groups, e.g.:

server = 1.2.3.4/32
server = nas01

4.3.8.3.2 Messages

These options handle displaying of messages to the user.

• message = string

A message displayed to the user upon log-in.

• hushlogin = ( yes | no )

Setting hushlogin to yes keeps the daemon from displaying motd and user messages upon login.
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4.3.8.3.3 Enable passwords

Enable passwords may be specified at, in order of preference, host, user or group level:

• enable [ level ] = ( permit | deny | login | ( clear | crypt ) password )

This directive may be used to set user or group specific enable passwords, to use the login password, or to permit (without
password) or refuse any enable attempt. Enable secrets defined at group or user level have precedence over those defined at
host level. level defaults to 15.

The default privilege level for an ordinary user on the NAS is usually 1. When a user enables, she can reset this level to a value
between 0 and 15 by using the NAS enable command. If she doesn’t specify a level, the default level she enables to is 15.

4.3.8.3.4 MAVIS options

The following MAVIS related option is available for groups and locally defined users:

• mavis realm = realmName

For locally defined users with password = mavis (or one if its variations) this directive selects the realm to use for MAVIS
authentications.

4.3.8.3.5 Group membership

Group membership is specified using the member directive:

• member [ acl [ not ] acl ] = string [ , ... ]

This directive defines group membership, optionally depending on the NAS server’s address or on some access list. For
example, you could configure:

host = campus { ... }
host = remote { ... }
host = router { ... }
timespec = workinghours { ... }
group = admins { ... }
group = staff { ... }
group = guest { ... }

plus a couple of ACLs:

acl oncampus = { nac = campus }
acl viavpn = { nac = remote }
acl atwork = { nac = campus time = workinghours }

and then base group membership on the latter:

user = adminuser { member = admins }
user = employee {

...
member acl atwork = staff@router
member acl viavpn = staff
member acl remote = guest
...

}
user = guest {

...
member acl atwork = guest
...

}
user = myself {

...
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member = admins@router
member = staff
...

}

member directives are to be ordered by ACL name, with definitions without ACL coming last. This is enforced at parsing
time.

Alternate groups may be specified, with group names separated by /:

member = dialin/callback@10.11.12.13

Here, group membership will default to the dialin group. However, appending the separation character * (changeable
using the separation tag = character directive), followed by callback to the username at login time will choose the
corresponding callback group profile instead.

To iterate this again: Any user can be a member of exactly one primary group. The dialin/callback syntax in this exam-
ple actually means: The user is free to choose at login time whether he wants to be a member of dialin XOR callback.
User fred may authenticate as fred (or as fred*dialin) to gain dialin membership, and fred*callback will
assign him to the callback group.

The users’ choice can be overridden using the tag directive (see below).

Group membership may depend on NAS IP, e.g. fred could have something like

member = test1@nas1
member = test2@nas2

in his profile.

Just like users, groups can be member of (other) groups:

group = test1 { ... }
group = test2 { ... }

group = test2 {
...
member = test1
member = test2@nas1
...

}

Simultaneous membership in (non-hierarchical) groups isn’t supported.

As group membership is resolved when parsing the configuration file, groups and hosts need to be already defined before being
used as argument in a member definition.

• nas default restriction = ( cidr | host )

Limits usage of the group to the specified hosts, unless specified otherwise. Example:

group = group1 { nas default restriction = host1 }
group = group2 { }
group = group3 { nas default restriction = host1 }
user = user1 { member = group1,group2,group3@host3 }

is identical to

group = group1 { }
group = group2 { }
group = group3 { }
user = user1 { member = group1@host1,group2,group3@host3 }

Note: nas default restrictionwill be ignored for alternate group specifications (e.g. member = group1/group2).
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• tag ( acl [ not ] acl ) = string

As described above, a user may manually select an (allowed) group profile at login time using the user*group syntax. You
can override the user’s choice using the tag directive in user or group profiles. Plus, you can make acl-based tag selections.
E.g.:

timespec = workinghours { "* 9-16 * * 1-5" "* 9-12 * * 6" }
timespec = weekend { "* * * * 6-1" }
timespec = changewindow { "* 22-23 * * Sat" "* 0-3 * * Sun" }

acl helpdesk = {
time = workinghours
nac = internal_lan
nas = somecustomer

}

acl remoteadmin = {
time = changewindow
nac = dialin

}

user = fred {
login = clear test
member = admin/ro/emergency
tag acl helpdesk = admin
tag acl remoteadmin = emergency
tag = ro

}

fred will be a member of the admin group during work hours, but only if his client IP address is part of the internal LAN
and if he’s on a certain NAS. He’ll be member of the emergency group during change window hours, but needs to come
from the dial-in pool. Outside these hours he’s a member of the ro hours.

tag definitions are evaluated in order. If no definition matches, the user’s session tag (the group selected at login time using
user*group syntax) is used. If no group tag was given, the first group in the member definition is selected.

In most cases, it might be a better idea to use member acl syntax instead of tag acl.

4.3.8.3.6 Railroad Diagrams

user realm realmName = userName { UserAttr

GroupAttr

ShellDecl

ServiceDecl

}

Railroad diagram: UserDecl

group realm realmName = groupName { GroupAttr

GroupOnlyAttr

ShellDecl

ServiceDecl

}

Railroad diagram: GroupDecl
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clear cleartextPassword

7 obscuredPassword

permit

deny

Railroad diagram: PasswordExpr

PasswdExpr

login

crypt hashedPassword

Railroad diagram: PasswordExprHash

password login

pap

= PasswordExprHash

chap

ms-chap

= PasswordExpr

password = PasswdExpr

password Acl { login

pap

= PasswordExprHash

chap

ms-chap

= PasswordExpr

}

Railroad diagram: UserAttr

message permit

deny

debug

= string

Railroad diagram: UserMessage
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EnableExpr

valid from

until

= yyyy-mm-dd

secondsSinceTheEpoch

message = string

default service = permit

deny

hushlogin = permit

deny

prohibit service = serviceName

client = permit

deny

CIDR

hostName

regex = permit

deny

regularExpression

server = permit

deny

CIDR

hostName

member Acl = groupName @ CIDR

hostName

,

nas restriction default = CIDR

hostName

,

tag Acl = groupName

acl = permit

deny

not aclName

mavis realm = realmName

Debug

Railroad diagram: GroupAttr

template = groupName

Railroad diagram: GroupOnlyAttr

4.3.8.4 Service Restrictions

• default service = ( permit | deny )

This defines whether a service not explicitely defined in the user profile should be permitted or denied.

• prohibit service = service ...

Use this to override the default service specification. E.g., to explicitely deny the X.25 service:

prohibit service = x25

4.3.8.5 Service Definitions

Service definitions may appear in user and group sections. Services can easily be made dependent on ACLs:
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service ( acl [ not ] ACLName = service { ... }

There are a couple of generic configuration attributes which may appear in arbitrary service definitions. In particular:

• default attribute = ( permit | deny )

This directive specifies whether the daemon is to accept or reject unknown attributes sent by the NAS (default: deny).

• acl = ( [ permit ] | deny ) [ not ] acl

Just as user and group profiles, services can be restricted by using ACLs.

• ( set | add | optional ) attribute = value

Defines mandatory and optional attribute-value pairs:

– set unconditionally returns a mandatory AV pair to the NAS

– optional returns a NAS-requested (and perhaps modified) optional AV pair to the NAS unless the attribute was already
in the mandatory list

– add returns an optional AV pair to the client even if the client didn’t request it (and it was neither in the mandatory nor
optional list)

Example:

set priv-lvl = 15

For a detailed description on mandatory and optional AV-pairs, see the "The Authorization Algorithm" section somewhere
below.

• return

Use the current service definition as-is. This stops the daemon from checking for the same service in the groups the current
user (or group) is a member of.

Other configuration attributes are service specific and only valid in certain contexts:

SHELL (EXEC) Service

Shell startup should have an appropriate service

service = shell { }

defined. Valid configuration directive within the curly brackets are:

• default cmd = ( permit | deny )

This directive specifies whether the daemon is to accept or reject commands not explicitely permitted (default: deny).

• message ( permit | deny ) = string

This specifies a message to be presented to the user on accepting or rejecting a command. Recognized string substitutions
within string are %c for the command name, %a for the command arguments and %C for the currenly set context. Example:

message permit "Permitted ’%c %a’"
message deny "Denied ’%c %a’"

This directive may appear in cmd sections, too, where it overrides the service section definitions.

• cmd = command { ... }

cmd sections permit or deny commands and command arguments. Example:
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cmd = show {
deny /^(running|startup)-config/
deny tech-support
permit //
message deny = "Try this again and your account will be revoked."
message permit = "This data is to be considered confidentional."

}
cmd = reload {

permit //
message permit = "You hopefully know what you’re doing ..."

}

Regular expression syntax is POSIX or, if enabled at compile time, PCRE.

If you’re unsure what commands and arguments the router actually sends for verification, you may simply modify a user (or
group) profile to display those within a login session. E.g.,

user = ... {
...
debug = CMD
...
service = shell {

...
message debug = "author: ’cmd = %c { permit /^%a$/ }"
...

}
}

will display the configuration snippets to permit the command in PCRE syntax:

Router#conf t
author: ’cmd = configure { permit /^terminal <cr>$/ }’

Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#

Non-Shell Services

E.g. for PPP, protocol definitions may be used:

service = ppp {
protocol = ip { set addr = 1.2.3.4 }

}

Use

default protocol = permit

or

default protocol = deny

to specify the default for protocols not explicitly defined within a service declaration. (default: deny).

For a Juniper Networks-specific authorization service, use:

service = junos-exec {
set local-user-name = NOC
# see the Junos documentation for more attributes

}

Likewise, for Raritan Dominion SX IP Console Servers:
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service = dominionsx {
set port-list = "1 3 4 15"
set user-type = administator # or operator, or observer

}

Quotes
If your router expects double-quoted values (e.g. Cisco Nexus devices do), you can advise the parser to automatically add
these:

service = shell {
set shell:roles="\"network-admin\""

}

and

service = shell {
double-quote-values = yes
set shell:roles="network-admin"

}

are equivalent, but the latter is more readable.

4.3.8.6 Host-group specific services

Services can be configured NAS specific by appending @host to the service name. Here, host is the name of a host object, not
an IP address or CIDR range. For example, a user’s PPP address could be static on one particular NAS, but dynamic everywhere
else:

host = dialin { address = ... }
user = ... {

service = ppp { protocol = ip { } }
service = ppp@dialin { protocol = ip { set addr = 1.2.3.4 } }

}

While the same can be achieved using host specific group membership, this adds some flexibility for dynamic authentication
backends.

4.3.8.7 CLI Contexts

When used with single-connection and being told so, the daemon tries to remember command context. which permits the
shutdown family of commands for exactly one interface, but denies it for all the others:

user = john {
password = clear doe
service = shell {

default cmd = permit
set priv-lvl = 15
script = {

if (cmd == "") permit # shell startup

if (cmd =~ /^interface FastEthernet 0\/1 /) {
message = "Context has been set. \"[no] shut\" should work for you."
context = FE
permit

} else if (cmd =~ /^interface/){
message = "Context has been reset."
context = ""
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permit
}
if (context == FE) {

if (cmd =~ /^shutdown/) permit
if (cmd =~ /^no shutdown/) permit
deny

}
}
cmd = shutdown { deny . }
cmd = no { deny /^shutdown/ }

}
}

4.3.8.8 Examples

Here we declare two users fred and lily, and two groups, admin and staff.

fred is a member of group admin and group admin is in turn a member of group staff. lily is not a member of any
group.

group = admin {
# group admin is a member of group staff
member = staff
service = shell {

set priv-lvl = 15
}

}

group = staff {
# group staff is not a member of any group

}

user = lily {
# user lily is not a member of any group
# and has nothing else configured as yet

}

user = fred {
# fred is a member of group admin on 0.0.0.0/0
member = admin
# fred is a member of group staff when logging in on 10.0.0.0/8
member = staff@10.0.0.0/8
# fred is a member of group admin when logging in on hosts
# defined in hostgroup test123
member = admin@test123
# fred may only log in from a client in 172.16.0.0/24 ...
client = 172.16.0.0/24
# ... or from whatever address is defined in some host object test123
client = test123

}

4.3.8.9 Railroad Diagrams

service = serviceName @ hostName {

ServiceAttr

}

Railroad diagram: ServiceDecl
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AttrDefault

ProtoDefault

ProtoDecl

Acl

AVPair

UserMessage

return

Railroad diagram: ServiceAttr

acl = not aclName

Railroad diagram: Acl

default attribute = permit

deny

Railroad diagram: AttrDefault

set add optional attribute = value

Railroad diagram: AVPair

service Acl = shell @ hostName {

ShellAttr

}

Railroad diagram: ShellDecl

AttrDefault

CmdDefault

Acl

AVPair

TacScript

return

Railroad diagram: ShellAttr

script = { TacAction }

Railroad diagram: TacScript

cmd = command { permit

deny

commandArgRegex

UserMsg

}

Railroad diagram: ShellCommandDecl

default cmd = permit

deny

Railroad diagram: CmdDefault
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default protocol = permit

deny

Railroad diagram: ProtoDefault

protocol = protocolName

{ AttrDefault

Acl

AVPair

UserMessage

}

Railroad diagram: ProtoDecl

4.3.8.10 Configuring Non-local Users via MAVIS

MAVIS configuration is optional. You don’t need it if you’re content with user configuration in the main configuration file.

MAVIS backends may dynamically create user entries, based, e.g., on LDAP information.

For PAP and LOGIN,

pap backend = mavis
login backend = mavis

in the global section delegate authentiation to the MAVIS sub-system. Statically defined users are still valid, and have a higher
precedence.

By default, MAVIS user data will be cached for 120 seconds. You may change that period using

cache timeout = seconds

in the global configuration section.

4.3.8.11 Configuring Local Users for MAVIS authentication

Under certain circumstances you may wish to keep the user definitions in the plain text configuration file, but authenticate against
some external system nevertheless, e.g. LDAP or RADIUS. To do so, just specify one of

login = mavis
pap = mavis
password = mavis

in the corresponding user definition.

4.3.8.12 Recursion and Groups

In general, when the daemon looks up values, it will look first to see if the user has her own definition for that value. If not, it
looks to see if she belongs to a group and if so, whether the group has a value defined. If not, this process continues through the
hierarchy of groups (a group can be a member of another group) until a value is found, or there are no more gmaryroups.

This recursive process occurs for lookups of expiration dates and also for authorization parameters (see later), but not for user
passwords.

A typical configuration technique is thus to place users into groups and specify as many groupwide characteristics in the group
declaration as possible. Then, individual user declarations can be used to override the group settings for selected users as needed.
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4.3.8.13 Configuring User Authentication

User Authentication can be specified separately for PAP, ARAP, CHAP, and normal logins. ARAP, CHAP, and global user
authentication must be given in clear text.

The following assigns the user mary five different passwords for ARAP, inbound and outbound CHAP, inbound PAP, outbound
PAP, and normal login respectively:

user = mary {
arap = clear "arap password"
chap = clear "chap password"
pap = clear "inbound pap password"
login = crypt XQj4892fjk

}

If

user backend = mavis

is configured in the global section, users not found in the configuration file will be looked up by the MAVIS backend. You
should consider using this option in conjuction with the more sophisticated backends (LDAP and ActiveDirectory, in particular),
or whenever you’re not willing to duplicate your pre-existing database user data to the configuration file. For users looked up by
the MAVIS backend,

pap backend = mavis

and/or

login backend = mavis

(again, in the global section of the configuration file) will cause PAP and/or Login authentication to be performed by the MAVIS
backend (e.g. by performing an LDAP bind), ignoring any corresponding password definitions in the users’ profile.

If you just want the users defined in your configuration file to authenticate using the MAVIS backend, simply set the correspond-
ing PAP or Login password field to mavis (there’s no need to add the user backend = mavis directive in this case):

user = mary { login = mavis }

4.3.8.14 Configuring Expiry Dates

An entry of the form:

user = lol {
valid until = YYYY-MM-DD
login = clear "bite me"

}

will cause the profile to become invalid, starting after the valid until date. Valid date formats are both ISO8601 and the
absolute number of seconds since 1970-01-01.

A expiry warning message is sent to the user when she logs in, by default starting at 14 days before the expiration date, but
configurable via the warning period directive.

Complementary to profile expiry,

valid from = YYYY-MM-DD

activates a profile at the given date.
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4.3.8.15 Configuring Authentication on the NAS

On the NAS, to configure login authentication, try

aaa new-model
aaa authentication login default group tacacs+ local

(Alternatively, you can try a named authentication list instead of default. Please see the IOS documentation for details.)

Don’t lock yourself out.
As soon as you issue this command, you will no longer be able to create new logins to your NAS without a functioning
TACACS+ daemon appropriately configured with usernames and password, so make sure you have this ready.
As a safety measure while setting up, you should configure an enable secret and make it the last resort authentication
method, so if your TACACS+ daemon fails to respond you will be able to use the NAS enable password to login. To do
this, configure:

aaa authentication login default group tacacs+ enable

or, to if you have local accounts:

aaa authentication login default group tacacs+ local

If all else fails, and you find yourself locked out of the NAS due to a configuration problem, the section on recovering
from lost passwords on Cisco’s CCO web page will help you dig your way out.

4.3.8.16 Configuring Authorization

Authorization must be configured on both the NAS and the daemon to operate correctly. By default, the NAS will allow every-
thing until you configure it to make authorization requests to the daemon.

On the daemon, the opposite is true: The daemon will, by default, deny authorization of anything that isn’t explicitly permitted.

Authorization allows the daemon to deny commands and services outright, or to modify commands and services on a per-user
basis. Authorization on the daemon is divided into two separate parts: commands and services.

4.3.8.17 Authorizing Commands

Exec commands are those commands which are typed at a Cisco exec prompt. When authorization is requested by the NAS, the
entire command is sent to the tac_plus daemon for authorization.

Command authorization is configured by specifying a list of PCRE (Perl Compatible Regular Expressions) or egrep-style
(POSIX 1003.2) regular expressions to match command arguments (see your local pcrematching(3) or regex(7) man page,
respectively, for a description of regular expressions), and an action which is deny or permit.

Case-insensitive pattern-matching
By default, regular expression matching is case-insensitive. This can be changed by specifying

regex-match-case = yes

If a POSIX pattern contains spaces or special characters, you’ll have to enclose the pattern in double quotes ("). For text inside
double quotes, C parsing rules apply. In particular, the backslash \ needs to be escaped as \\. PCRE patterns need to be enclosed
in slashes (/pattern/). Both POSIX and PCRE syntax may be used in the same configuration file.

The following configuration example permits user Fred to run the following commands:

telnet 131.108.13.any_number
telnet 128.any_number.12.3
show running-config interface anything
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All other commands are denied (by default).

user=fred {
# default service = deny
service = shell {

# default cmd = deny
cmd = telnet {

# permit specified telnets
# POSIX:
permit ^131\.108\.13\.[0-9]+$
# PCRE:
permit /^128\.\d+\.12\.3$/

}
cmd = show {

# permit show commands
# PCRE:
permit /^running-config interface/

}
}

}

Whitespace
If any non-PCRE argument list you specify contains spaces or tabs, you must enclose it in double quotes. PCRE expressions
are to be enclosed in slashes, anyway.

The command and arguments which the user types gets matched to the regular expressions you specify in the configuration file
(in order of appearance). The first successful match performs the associated action (permit or deny). If there is no match, the
command is denied by default.

Conversely, the following configuration example can be used to deny the command:

telnet 131.108.13.any_number

and permit all other arguments, since the last line will match any argument list. All other commands and services are permitted
due to the "default service = permit" clause.

Note: the default statement must be the first in the user clause

user=fred {
default service = permit
service = shell {

cmd = telnet {
# allow all telnet commands except to 131.108.13.*
deny ^131\.108\.13\.[0-9]+
permit .*

}
}

}

Matches are only anchored if you specify so, so deny 131.108.13.[0-9]+ matches anywhere in the command. To anchor
the match, use ˆ at the beginning of the regular expression.

When a command has multiple arguments, users may enter them in many different permutations. It can be cumbersome to create
regular expressions which will reliably authorize commands under these conditions, so administrators may wish to consider other
methods of performing authorization e.g. by configuring NAS-local privileged enable levels on the NAS itself.
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4.3.8.17.1 Command Expansion

For command authorization, the Cisco NAS expands all commands to their full names e.g. when you type config t on the
NAS, this will be expanded to configuration terminal before being sent to the daemon so that you don’t need to list all
the possible contractions of a command.

At the user level i.e. inside the braces of a user declaration, the default for a user who doesn’t have a service or command
explicitly authorized is to deny that service or command. The following directive will permit the service or command by default
instead:

user = lol {
default service = permit

}

Note: This directive must appear first inside the user declaration.

At the service authorization level i.e. inside the braces of a service declaration, arguments in an authorization request are
processed according to the algorithm described later. Some actions when authorizing services (e.g. when matching attributes are
not found) depend on how the default is configured. The following declaration changes the default from deny to permit for this
user and service.

user = lol { service = shell { default attribute = permit } }

Note: This directive must appear before any others inside the service declaration.

Note: for command authorization (as opposed to service authorization being discussed here), you specify deny .* or permit .* as
the last line of the regular expression matches to create default behavior.

4.3.8.18 Authorizing EXEC (SHELL) Startup

You can supply some parameters whenever an shell starts, e.g. an autocommand, a dialback string or a connection access list
(acl). In the example below, when an exec is started on the NAS, an acl of 4 will be returned to the NAS:

user=fred {

# this following line permits an exec to start and permits
# all commands and services by default

default service = permit

service = shell {
# When an exec is started, its connection access list will be 4.
# It also has an autocmd.
set acl = 4
set autocmd = "telnet foobar"

cmd = telnet {
# allow all fred’s telnet commands except telnet to 131.108.13.*
deny 131\.108\.13\.[0-9]+
permit .*

}
}

}

Note: specifying an autocommand, or any other exec services, is part of EXEC AUTHORIZATION. For it to work, you must
also configure exec authorization on your NAS e.g.

aaa authorization exec authorlist group tacacs+ local
aaa authorization commands 15 cmdlist group tacacs+ local

and, eventually, on the lines:
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authorization commands 15 cmdlist
authorization exec authorlist

Just as with authentication, you can use a named authorization list, or simply default.

4.3.8.19 Authorizing EXEC, SLIP, PPP and ARAP services

Authorizing EXEC, SLIP, PPP and ARAP services is done quite differently from command authorization.

When authorizing these services, the NAS sends a request containing a number of attribute-value (AV) pairs, each having the
form

attribute=value

(Note: during debugging, you may see AV pairs whose separator character is a * instead of a = sign, meaning that the value in a
pair is optional. An = sign indicates a mandatory value. A * denotes an optional value).

E.g., a user starting PPP/IP using an address of 131.108.12.44 would generate a request with the following AV pairs:

service=ppp
protocol=ip
addr*131.108.12.44

You can use the NAS debugging command

debug aaa authorization

to see what authorization AV pairs are being used by the NAS. Note: If you are not on the router console, you will also need to
issue a terminal monitor command to see debug output.

4.3.8.20 The Authorization Process

Authorizing a single session can result in multiple requests being sent to the daemon. For example, in order to authorize a dialin
PPP user for IP, the following authorization requests will be made from the NAS:

1. An initial authorization request to startup PPP from the exec, using the AV pairs service=ppp, protocol=ip, will
be made (Note: this initial request will be omitted if you are autoselecting PPP, since you won’t know the username yet).

This request is really done to find the address for dumb PPP (or SLIP) clients who can’t do address negotiation. Instead,
they expect you to tell them what address to use before PPP starts up, via a text message e.g. "Entering PPP. Your address
is 1.2.3.4". They rely on parsing this address from the message to know their address.

2. Next, an authorization request is made from the PPP subsystem to see if PPP’s LCP layer is authorized. LCP parameters
can be set at this time (e.g. callback). This request contains the AV pairs service=ppp, protocol=lcp.

3. Next an authorization request to startup PPP’s IPCP layer is made using the AV pairs service=ppp, protocol=ipcp.
Any parameters returned by the daemon are cached.

4. Next, during PPP’s address negotiation phase, each time the remote peer requests a specific address, if that address isn’t in
the cache obtained in step 3, a new authorization request is made to see if the peers requested address is allowable. This
step can be repeated multiple times until both sides agree on the remote peer’s address or until the NAS (or client) decide
they’re never going to agree and they shut down PPP instead.
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4.3.8.21 Authorization Relies on Authentication

Since we pretty much rely on having a username in authorization requests to decide which addresses etc. to hand out, it is
important to know where the username for a PPP user comes from. There are generally 2 possible sources:

1. You force the user to authenticate by making her login to the exec and you use that login name in authorization requests.
This username isn’t propagated to PPP by default. To have this happen, you generally need to configure the if-needed
method, e.g.

aaa authentication login default tacacs+
aaa authentication ppp default if-needed

2. Alternatively, you can run an authentication protocol, PAP or CHAP (CHAP is much preferred), to identify the user. You
don’t need an explicit login step if you do this (so it’s the only possibility if you are using autoselect). This authentication
gets done before you see the first LCP authorization request of course. Typically you configure this by doing:

aaa authentication ppp default tacacs+
int async 1
ppp authentication chap

If you omit either of these authentication schemes, you will start to see authorization requests in which the username is missing.

4.3.8.22 Configuring Service Authorization

A list of AV pairs is placed in the daemon’s configuration file in order to authorize services. The daemon compares each NAS
AV pair to its configured AV pairs and either allows or denies the service. If the service is allowed, the daemon may add, change
or delete AV pairs before returning them to the NAS, thereby restricting what the user is permitted to do.

4.3.8.22.1 The Authorization Algorithm

The complete algorithm by which the daemon processes its configured AV pairs against the list the NAS sends, is given below.

Find the user (or group) entry for this service (and protocol), then for each AV pair sent from the NAS:

1. If the AV pair from the NAS is mandatory:

(a) look for an exact attribute,value match in the user’s mandatory list. If found, add the AV pair to the output.
(b) If an exact match doesn’t exist, look in the user’s optional list for the first attribute match. If found, add the NAS AV

pair to the output.
(c) If no attribute match exists, deny the command if the default is to deny, or,
(d) If the default is permit, add the NAS AV pair to the output.

2. If the AV pair from the NAS is optional:

(a) look for an exact attribute,value match in the user’s mandatory list. If found, add DAEMON’s AV pair to output.
(b) If not found, look for the first attribute match in the user’s mandatory list. If found, add DAEMON’s AV pair to

output.
(c) If no mandatory match exists, look for an exact attribute,value pair match among the daemon’s optional AV pairs. If

found add the DAEMON’s matching AV pair to the output.
(d) If no exact match exists, locate the first attribute match among the daemon’s optional AV pairs. If found add the

DAEMON’s matching AV pair to the output.
(e) If no match is found, delete the AV pair if the default is deny, or
(f) If the default is permit add the NAS AV pair to the output.

3. After all AV pairs have been processed, for each mandatory DAEMON AV pair, if there is no attribute match already in
the output list, add the AV pair (but add only ONE AV pair for each mandatory attribute).

4. After all AV pairs have been processed, for each optional unrequested DAEMON AV pair, if there is no attribute match
already in the output list, add that AV pair (but add only ONE AV pair for each optional attribute).
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4.3.8.22.2 Recursive Authorization

Remember that authorization is also recursive over groups. Thus, if you place a user in a group, the daemon will look in the
group for authorization parameters if it cannot find them in the user declaration.

4.3.8.23 Examples

host = 0.0.0.0/0 {
key = "your key here"

}

group = admin {
# group members who have no expiry date set will use this one
valid until = 1997-01-01
service = shell {

default cmd = permit
}

}

user=fred {
login = crypt mEX027bHtzTlQ
member = admin
valid until = 2005-05-23

service = shell {
# When Fred starts an exec, his connection access list is 5
set acl = 5

# We require this autocmd to be done at startup
set autocmd = "telnet foo"

# All commands except show system are denied for Fred
cmd = show {

# Fred can run the following show command
permit system
deny .

}
}

service = ppp {
protocol = lcp
protocol = ip {

# Fred can run IP over PPP only if he uses one
# of the following mandatory addresses. If he
# supplies no address, the first one here will
# be mandated
set addr=131.108.12.11
set addr=131.108.12.12
set addr=131.108.12.13
set addr=131.108.12.14

# Fred’s mandatory input access list number is 101
set inacl=101

# We will suggest an output access list of 102,
# but the NAS may choose to ignore or override it
optional outacl=102

}
}

service = slip {
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default protocol = permit
# Fred can run SLIP. When he does, he will have to use
# these mandatory access lists
set inacl=101
set outacl=102

}
}

user = wilma {
login = crypt mEX027bHtzTlQ
member = admin

}

4.3.8.24 Configuring Authorization on the NAS

If authorization is not explicitly configured on the NAS, no authorization takes place, i.e. effectively, everything is permitted.
Note that this is the converse of what happens on the daemon, where anything not explicitly permitted is denied by default.

To configure command authorization on the NAS, issue the following NAS configuration commands:

aaa authorization commands 15 cmdlist group tacacs+ local

and, on the lines:

aaa authorization commands 1 cmdlist
aaa authorization commands 15 cmdlist

This will make the NAS send TACACS+ requests for all level 1 (ordinary user) and level 15 (privileged level) commands.

Note: As soon as you configure the above on your NAS, you will only be permitted to execute NAS commands which are
permitted by your TACACS+ daemon. So make sure you have configured, on the daemon, an authenticated user who is authorized
to run commands, or you will be unable to do much on the NAS after turning on authorization.

Alternatively, or in addition, you may also want to configure the following:

aaa authorization commands 1 group tacacs+ if-authenticated

This will use TACACS+ authorization for level 1 (user-level commands) but if problems arise, you can just switch off the
TACACS+ server and authorization will then be granted to anyone who is authenticated.

The following daemon configuration should be sufficient to ensure that you can always login as username admin (with a suitable
password) and run any command as that user:

user = admin {
default service = permit
service = shell { default cmd = permit }
login = crypt kppPfHq/j6gXs

}

5 MAVIS Backends

The distribution comes with various MAVIS modules, of which the external module is probably the most interesting, as it interacts
with simple Perl scripts to authenticate and authorize requests. You’ll find sample scripts in the mavis/perl directory. Have a
close look at them, as you may (or will) need to perform some trivial customizations to make them match your local environment.

You should really have a look at the MAVIS documentation. It gives examples for RADIUS and PAM authentication, too.
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5.1 LDAP Backends

mavis_tacplus_ldap.pl is an authentication/authorization backend for the external module. It interfaces to various kinds
of LDAP servers, e.g. OpenLDAP, Fedora DS and Active Directory. Its behaviour is controlled by a list of environmental
variables:

Variable Description

LDAP_SERVER_TYPE
One of: generic, tacacs_schema, microsoft.
Default: tacacs_schema

LDAP_HOSTS
Space-separated list of LDAP URLs or IP addresses or hostnames
Examples:
"ldap01 ldap02", "ldaps://ads01:636 ldaps://ads02:636"

LDAP_SCOPE
LDAP search scope (base, one, sub)
Default: sub

LDAP_BASE
Base DN of your LDAP server
Example: dc=example,dc=com

LDAP_FILTER

LDAP search filter. Defaults:

• for LDAP_SERVER_TYPE=generic:

"(uid=%s)"

• for LDAP_SERVER_TYPE=tacacs_schema:

"(&(uid=%s)(objectClass=tacacsAccount))"

• for LDAP_SERVER_TYPE=microsoft:

"(&(objectclass=user)(sAMAccountName=%s))"

LDAP_FILTER_CHPW

LDAP search filter for password changes. Defaults:

• for LDAP_SERVER_TYPE=generic:

"(uid=%s)"

• for LDAP_SERVER_TYPE=tacacs_schema:

"(&(uid=%s)(objectClass=tacacsAccount)(!(tacacsFlag=staticpasswd)))"

• for LDAP_SERVER_TYPE=microsoft:

"(&(objectclass=user)(sAMAccountName=%s))"

LDAP_USER
User to use for LDAP bind if server doesn’t permit anonymous searches.
Default: unset

LDAP_PASSWD
Password for LDAP_USER
Default: unset

AD_GROUP_PREFIX

An AD group starting with this prefix will be used as the user’s TACACS+ group
membership. The value of AD_GROUP_PREFIX will be stripped from the group
name.
Example: With AD_GROUP_PREFIX set to tacacs (which is actually the
default), an AD group membership of TacacsNOC will assign the user to the NOC
TACACS+ group. Note that TACACS+ group names are case-sensitive.

REQUIRE_AD_GROUP_PREFIX
If set, user needs to be in one of the AD_GROUP_PREFIX groups.
Default: unset

USE_TLS
If set, the server is required to support start_tls.
Default: unset

FLAG_CHPW
Permit password changes via this backend.
Default: unset

FLAG_PWPOLICY
Try to enforce a simplicistic password policy.
Default: unset
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Variable Description

FLAG_CACHE_CONNECTION
Keep connection to LDAP server open.
Default: unset

FLAG_FALLTHROUGH
If searching for the user in LDAP fails, try the next MAVIS module (if any).
Default: unset

FLAG_USE_MEMBEROF

Use the memberOf attribute for determining group membership. Setting
LDAP_SERVER_TYPE to microsoft implies this. May be used if you’re
running OpenLDAP with memberof overlay enabled.
Default: unset

5.1.1 LDAP Custom Schema Backend

For LDAP_SERVER_TYPE set to tacacs_schema, the program expects the LDAP server to support the experimental ldap.schema,
included for OpenLDAP and Fedora-DS. The schema files are located in the mavis/perl directory.

The new schema allows for a auxiliary object class

objectClass: tacacsAccount

which introduces a couple of new attributes. A sample user entry could then look similar to the following LDIF snippet:

dn: uid=marc,ou=people,dc=example,dc=com
uid: marc
cn: Marc Huber
objectClass: posixAccount
objectClass: inetOrgPerson
objectClass: shadowAccount
objectClass: tacacsAccount
shadowMax: 10000
uidNumber: 1000
gecos: Marc Huber
givenName: Marc
sn: Huber
gidNumber: 500
shadowLastChange: 14012
loginShell: /bin/bash
homeDirectory: /Users/marc
mail: marc@example.com
userPassword:: abcdefghijklmnopqrstuvwxyz=
tacacsClient: 192.168.0.0/24
tacacsClient: management
tacacsMember: readonly@172.16.5.0/24
tacacsMember: readwrite@nasgroup
tacacsProfile: { valid until = 2010-01-30 chap = clear ahzoi5Ue }

As tacacsProfile may (and most probably will) contain sensitive data, you should consider setting up LDAP ACLs to
restrict access.

You should be pretty familiar with OpenLDAP (or, for that matter, Fedora-DS) if you’re willing to go this route. For current
versions of OpenLDAP: Use ldapadd to add tacacs_schema.ldif to the cn=config tree. For older versions, add
tacacs.schema to the list of included schema and objectClass definitions in slapd.conf.

5.1.2 Active Directory Backend

If LDAP_SERVER_TYPE is set to microsoft, the script backends to AD servers. Sample configuration:

id = spawnd {
listen = {

port = 49
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}
spawn = {

instances min = 1
instances max = 10

}
background = yes

}

id = tac_plus {
access log = /var/log/tacacs/%Y/%m/%d/access.log
accounting log = /var/log/tacacs/%Y/%m/%d/acct.log

mavis module = external {
# Optionally:
# script out = {
# # Require group membership:
# if (undef($TACMEMBER) && $RESULT == ACK) set $RESULT = NAK
#
# # Don’t cache passwords:
# if ($RESULT == ACK) set $PASSWORD_ONESHOT = 1
# }

setenv LDAP_SERVER_TYPE = "microsoft"
# setenv LDAP_HOSTS = "ldaps://ads01:636 ldaps://ads02:636"
setenv LDAP_HOSTS = "ads01:3268 ads02:3268"
setenv LDAP_SCOPE = sub
setenv LDAP_BASE = "dc=example,dc=com"
setenv LDAP_FILTER = "(&(objectclass=user)(sAMAccountName=%s))";
setenv LDAP_USER = tacacs@example.com
setenv LDAP_PASSWD = Secret123
setenv AD_GROUP_PREFIX = tacacs
# setenv REQUIRE_AD_GROUP_PREFIX = 1
setenv USE_TLS = 0
exec = /usr/local/lib/mavis/mavis_tacplus_ldap.pl

}

login backend = mavis
pap backend = mavis

host = world {
address = ::/0
welcome banner = "Welcome\n"
key = cisco

}

host = helpdesklab {
address = 192.168.34.16/28

}

# A user will be in the "admin" group if he’s member of the
# corresponding "tacacsadmin" ADS group.

group = admin {
default service = permit
service = shell {

default command = permit
default attribute = permit
set priv-lvl = 15

}
}

# A user will be in the "helpdesk" group if he’s member of the
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# corresponding "tacacshelpdesk" ADS group:

group = helpdesk {
default service = permit
service = shell {

default command = permit
default attribute = permit
set priv-lvl = 1

}
enable = deny
member = admin@helpdesklab

}
}

5.1.3 Generic LDAP Backend

If LDAP_SERVER_TYPE is set to generic, the script won’t require any modification to your LDAP server, but only authenti-
cates users (with login = mavis, pap = mavis or password = mavis declaration) defined in the configuration file.
No authorization is done by this backend.

5.2 PAM backend

Example configuration for using Pluggable Authentication Modules:

id = spawnd { listen = { port = 49 } }

id = tac_plus {
mavis module = groups {
resolve gids = yes
groups filter = /^(guest|staff)$/
script out = {

# copy the already filtered UNIX group access list to TACMEMBER
eval $GIDS =~ /^(.*)$/
set $TACMEMBER = $1

}
}
mavis module = external {
exec = /usr/local/sbin/pammavis pammavis "-s" "sshd"

}
user backend = mavis
login backend = mavis
host = global { address = 0.0.0.0/0 key = cisco }

group = staff {
service = shell {

default command = permit
set priv-lvl = 15

}
}
group = guest {
service = shell {

default command = deny
set priv-lvl = 15
cmd = show { permit .* }

}
}

}
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5.3 System Password Backends

mavis_tacplus_passwd.pl authenticates against your local password database. Alas, to use this functionality, the script
may have to run as root, as it needs access to the encrypted passwords. Primary and auxiliary UNIX group memberships will be
mapped to TACACS+ groups.

mavis_tacplus_opie.pl is based on mavis_tacplus_passwd.pl, but uses OPIE one-time passwords for authenti-
cation.

id = spawnd {
listen = { port = 49 }

}

id = tac_plus {
mavis module = external {
exec = /usr/local/lib/mavis/mavis_tacplus_opie.pl

}
login backend = mavis chalresp
host = global { address = 0.0.0.0/0 key = cisco }
group = staff {
service = shell {

default command = permit
set priv-lvl = 15

}
}
user = user1 { password = mavis member = staff }
user = user2 { password = clear pass2 member = staff }

}

5.4 Shadow Backend

mavis_tacplus_shadow.pl may be used to keep user passwords out of the tac_plusconfiguration file, enabling users to
change their passwords via the password change dialog. Passwords are stored in an auxiliary, /etc/shadow-like ASCII file,
one user per line:

username:encryptedPassword:lastChange:minAge:maxAge:reserved

lastChange is the number of days since 1970-01-01 when the password was last changed, and minAge and maxAge deter-
mine whether the password may/may not/needs to be changed. Setting lastChange to 0 enforces a password change upon
first login.

Example shadow file:

marc:$1$q5/vUEsR$jVwHmEw8zAmgkjMShLBg/.:15218:0:99999:
newuser:$1$pQtQsMuj$GKpIr5r2GNaZNfDfnCBtw.:0:0:99999:
test:$1$pQtQsMuj$GKpIr5r2GNaZNfDfnCBtw.:15218:1:30:

Sample daemon configuration:

...
id = tac_plus {
...
mavis module = external {

setenv SHADOWFILE = /path/to/shadow
# setenv FLAG_PWPOLICY=y
# setenv ci=/usr/bin/ci
exec = /usr/local/lib/mavis/mavis_tacplus_shadow.pl

}
...
login backend = mavis chpass
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...
user = marc {

login = mavis
...

}
...
}

...

5.5 RADIUS Backends

mavis_tacplus_radius.pl authenticates against a RADIUS server. No authorization is done, unless the RADIUS_GROUP_ATTR
environment variable is set (see below). This module may, for example, be useful if you have static user account definitions in
the configuration file, but authentication passwords should be verified by RADIUS. Use the login = mavis or password
= mavis statement in the user profile for this to work.

If the Authen::Radius Perl module is installed, the value of the RADIUS attribute specified by RADIUS_GROUP_ATTR
will be used to create a TAC_MEMBER definition which uses the attribute value as group membership. E.g., an attribute value of
Administrator would result in a

member = Administrator

declaration for the authenticated user, enabling authorization and omitting the need for static users in the configuration file.

Keep in mind that authorization will only work well if either

• the tacplus_info_cachemodule is being used (it will cache authentication AV pairs locally, so subsequent authorizations
should work fine unless you’re switching to a tac_plus server running elsewhere).

or

• single-connection is used and

• mavis cache timeout is set to a sufficiently high value that covers the user’s (expected) maximum login time.

Alternatively to mavis_tacplus_radius.pl the pamradius program may called by the external module. Results
should be roughly equivalent.

5.5.1 Sample Configuration

## Use tacinfo_cache to cache authorization data to disk:
mavis module = tacinfo_cache {

directory = /tmp/tacinfo
}

## You can use either the Perl module ...
#mavis module = external {
# exec = /usr/local/lib/mavis_tacplus_radius.pl
# setenv RADIUS_HOST = 1.2.3.4:1812 # could add more hosts here, comma-separated
# setenv RADIUS_SECRET = "mysecret"
# setenv RADIUS_GROUP_ATTR = Class
# setenv RADIUS_PASSWORD_ATTR = Password # defaults to: User-Password
# }
## ... or the freeradius-client based code:
mavis module = external {

exec = /usr/local/sbin/radmavis radmavis "group_attribute=Class" "authserver ←↩
=1.2.3.4:1812:mysecret"

}
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5.6 Experimental Backends

mavis_tacplus_sms.pl is a sample (skeleton) script to send One-Time Passwords via a SMS backend.

5.7 Error Handling

If a backend script fails due to an external problem (e.g. LDAP server unavailability), your router may or may not fall back to
local authentication (if configured). Chances are, that the fallback doesn’t work. If you still want to be able to authenticate via
TACACS+ in that case, you can do so with a non-MAVIS user which will only be valid in case of a backend error:

...
# set the time interval you want the user to be valid if the backend fails:
authentication fallback period = 60 # that’s actually the default value
...
# add a local user for emergencies:
user = cisco {

...
fallback-only
...

}

To indicate that fallback mode is actually active, you may a display a different login prompt to your users:

host = ... {
...
welcome banner = "Welcome\n"
welcome banner fallback = "Welcome\nEmergency accounts are currently enabled.\n"
...

}

Fallback can be enabled/disabled globally an on a per-host basis. Default is enabled.

authentication fallback = permit
host = ... {

...
authentication fallback = deny
...

}

6 Debugging

6.1 Debugging Configuration Files

When creating configuration files, it is convenient to check their syntax using the -P flag to tac_plus; e.g:

tac_plus -P config-file

will syntax check the configuration file and print any error messages on the terminal.

6.2 Trace Options

Trace (or debugging) options may be specified in global, host, user and group context. The current debugging level is a combi-
nation (read: OR) of all those. Generic syntax is:

debug = option ...
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For example, getting command authorization to work in a predictable way can be tricky - the exact attributes the NAS sends to
the daemon may depend on the IOS version, and may in general not match your expectations. If your regular expressions don’t
work, add

debug = REGEX

where appropriate, and the daemon may log some useful information to syslog.

Multiple trace options may be specified. Example:

debug = REGEX CMD

Trace options may be removed by prefixing them with-. Example:

debug = ALL -PARSE

The debugging options available are summarized in the following table:

Bit Value Name Description
0 1 PARSE Configuration file parsing
1 2 AUTHOR Authorization related
2 4 AUTHEN Authentication related
3 8 ACCT Accounting related
4 16 CONFIG Configuration related
5 32 PACKET Packet dump
6 64 HEX Packet hex-dump
7 128 LOCK File locking
8 256 REGEX Regular expressions
9 512 ACL Access Control Lists
10 1024 RADIUS unused
11 2048 CMD Command lookups
12 4096 BUFFER Buffer handling
13 8192 PROC Procedural traces
14 16384 NET Network related
15 32768 PATH File system path related
16 65536 CONTROL Control connection related
17 131072 INDEX Directory index related
18 262144 AV Attribute-Value pair handling
19 524288 MAVIS MAVIS related
20 1048576 DNS DNS related
21 2097152 USERINPUT Show user input (this may include passwords)
31 2147483648 NONE Disable debugging

Some of those debugging options are not used and trigger no output at all.

Debugging User Input
The daemon will (starting with snapshot 202012051554) by default no longer outputs user input from authentication packets
sent by the NAS. You can explicitly change this using the USERINPUT debug flag. Something like

debug = ALL

or using a numeric value will not work, it needs to be enabled explicitly, e.g.:

debug = ALL USERINPUT

Be prepared to see plain text user passwords if you enable this option.
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7 Frequently Asked Questions

• Is there a Graphical User Interface of any kind?
Old answer: No, unless your favourite text editor does qualify. The configuration syntax is too complex and flexible to be
coverable using a GUI. If you’re looking for a way to manage your user database then have a look at Webmin, ActiveDirectory,
whatever. It’s trivial to use those as authentication/authorization backends.

Updated answer: Yes, various, and unrelated. Search for "tacacsgui". There are other adaptors, too.

• How do I use the MySQL backend?
You don’t, unless you’re willing to write the SQL backend yourself. This isn’t hard, really, but obviously depends a lot on your
database structure and there’s simply no generic enough way to free you from this step. Just have a look at, e.g., the LDAP Perl
scripts that come with the distribution. If you’re remotely familiar with Perl and your SQL database, then writing the backend
will be a piece of cake.

• I’m using the single-connection feature. How can I force my router to close the TCP connections to the TACACS+
server?
On IOS, show tcp brief will display the TCP connections. Search for the ones terminating at your server, and kill them
using clear tcp tcb .... Example:

Router#sho tcp brief | incl 10.0.0.1.49
633BB794 10.0.0.2.17326 10.0.0.1.49 ESTAB
6287E4C4 10.0.0.2.24880 10.0.0.1.49 ESTAB
Router#clear tcp tcb 633BB794
[confirm]
[OK]

Router#clear tcp tcb 6287E4C4
[confirm]
[OK]

Router#

• Does the daemon require a working DNS?
No, DNS is not a requirement. You may however use DNS reverse mapping in NAC ACL lists, provided that the software is
compiled with c-ares support.

• Why do I get PPP authorization failures because of no username in request when I’ve already logged in and
authenticated?
With aaa authentication ppp default group tacacs+, the ppp authentication overrides the earlier login au-
thentication. If the ppp authentication fails, the username ends up blank. Changing the config to aaa authentication
ppp default if-needed group tacacs+ fixes this problem.

• Is there any way to avoid having clear text versions of the ARAP and CHAP secrets in the configuration file?
CHAP and ARAP require that the server knows the cleartext password (or equivalently, something from which the server can
generate the cleartext password). Note that this is part of the definition of CHAP and ARAP, not just the whim of some Cisco
engineer who drank too much coffee late one night.

If we encrypted the CHAP and ARAP passwords in the database, then we’d need to keep a key around so that the server can
decrypt them when CHAP or ARAP needs them. So this only ends up being a slight obfuscation and not much more secure
than the original scheme.

In extended TACACS, the CHAP and ARAP secrets were separated from the password file because the password file may be
a system password file and hence world readable. But with TACACS+’s native database, there is no such requirement, so we
think the best solution is to read-protect the files. Note that this is the same problem that a Kerberos server has. If your security
is compromised on the Kerberos server, then your database is wide open. Kerberos does encrypt the database, but if you want
your server to automatically restart, then you end up having to "kstash" the key in a file anyway and you’re back to the same
security problem.

So storing the cleartext password on the security server is really an absolute requirement of the CHAP and ARAP protocols,
not something imposed by TACACS+.
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With the scheme choosen for newer TACACS+ protocol revisions, the NAS sends the challenge information to the TACACS+
daemon and the daemon uses the cleartext password to generate the response and returns that.

The original TACACS+ protocol included specific protocol knowledge for both ARAP and CHAP. Please note that this version
of the daemon implementation no longer supports SENDPASS, SENDAUTH and ARAP to comply to RFC8907.

However, the above doesn’t apply to PAP. You can keep an inbound PAP password DES- or MD5-encrypted, since all you need
to do with it is verify that the password the principal gave you is correct.

• How is the typical login authentication sequence done?

1. NAS sends START packet to daemon

2. Daemon send GETUSER containing login prompt to NAS

3. NAS prompts user for username

4. NAS sends packet to daemon

5. Daemon sends GETPASS containing password prompt to the NAS

6. NAS prompts user for password

7. NAS sends packet to daemon

8. Daemon sends accept, reject or error to NAS

• What does "default service = permit" really do?
When a request comes in to authorize exec startup, or ppp (with protocol lcp, ip, ipx), or slip, or arap or a specific command,
the daemon looks for a matching declarations for the user (or groups the user is a member of).

For exec startup, it looks for a service=shell.

For PPP, it looks for a service=ppp and protocol= one of lcp, ip, ipx.

For SLIP there must be a service=slip and for ARAP a service=arap clause.

For commands, there must be a matching cmd=cmdname or a default cmd = permit definition.

If these aren’t found, authorization will fail, unless you say default service = permit.

• How do I make PAP work?
Avoid using PAP if possible since it’s not very secure. If you must use it, PAP passwords may be specified along with ARAP
and CHAP passwords for each user.

Passwords
It is very bad practice to use an outbound PAP password that is the same as any of your inbound passwords. For this reason,
a "global" password, defined with the password = clear ... statement, does not apply to outbound PAP, only to
inbound PAP, bidirectional CHAP and ARAP.

• How can I deny telneting from a commserver by IP address only i.e. when command is 10.0.1.6 rather than telnet
10.0.1.6?
The best way to restrict telnet access is by applying an outbound access list via the access class command (or equivalently, via
the "acl" avpair). The NAS configuration command

access-class n out

for example applies a pre-defined standard IP access list (where n is a number from 1 through 99) that governs telnet access
from a NAS.

E.g. the following configuration commands permit outgoing Telnet access from line 1 on the NAS *only* to hosts on network
192.85.55.0:

access-list 12 permit 192.85.55.0 0.0.0.255
line 1
access-class 12 out
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Note: You must define the access-list on the NAS. Only then can you use the acl avpair to apply it to a line that a user dials in
on.

Alternatively, you can try configuring transport preferred none on the lines in question. This will force a user to
always type telnet 10.0.1.6 in order to telnet out from the NAS. Then you can apply command authorization to this
command to restrict it.

• I have an autocommand configured in the NAS-local database and I’m using

aaa authentication local-override

The autocommand doesn’t work, but the username/password does. Why?
The local-override only applies to the authentication portion of the local database, so if you want an autocommand for
this user, you need to also do:

aaa authorization exec local if-authenticated

This will use the local DB entry if one exists, allow authenticated users otherwise, or fail.

We don’t have a aaa authorization local-override like we do for authentication. Unlike authentication, the local
method for authorization is sort of equivalent to a local-override.

• Can TACACS+ only be enabled on a global basis?
You turn TACACS+ ON on a global basis, but you can then change the behavior of individual lines to whatever you want, e.g.

aaa authentication login default tacacs+ none
aaa authentication login oldstyle line
aaa authentication login none none
line 1 16
login authentication default

line vty 0 4
login authentication oldstyle

line 0
login authentication none

Note that unfortunately, you can’t (yet) apply authorization differently to selected lines and interfaces.

• I have leased lines running PPP, and AAA authorization is also configured, so the authorization on the leased lines fails.
What should I do?
Since you can’t (yet) configure authorization on a per-line basis, you have to turn on authentication on the leased lines running
PPP and configure your TACACS+ server so that it will authorize these lines correctly.

A more demanding alternative is to modify the TACACS+ server source code to allow any authorizations coming in from the
port "SerialXXX" to succeed.

A third possibility is to not use PPP on those lines, e.g. use HDLC instead. HDLC doesn’t require authentication or authoriza-
tion.

• How many characters may a TACACS+ Username and Password contain?
The short answer is 31 bytes of username, with up to 254 bytes of password if they are cleartext (8 bytes if passwords are DES
encrypted).

The long answer is that the Cisco NAS allocates a buffer of 1024 bytes, so this is the maximum you can type in, in response to
a NAS prompt.

But the protocol spec allows a username or password length field of just one byte in an authentication packet, so only the first
255 of these characters can be sent to the daemon.

Now if it’s a DES encrypted password, then only the first 8 bytes are significant, per the common unix implementations of
crypt.

• How do I limit the number of sessions a user can have?
With this version of the daemon you can’t.
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• How can I configure time-outs on an interface via TACACS+?
Certain per-user/per-interface timeouts may be set by TACACS+ during authorization. As of 11.0, you can set an arap session
timeout, and an exec timeout. As of 11.1 you can also set an exec idle timeout.

There are currently no settable timeouts for PPP or SLIP sessions, but there is a workaround which applies to ASYNC PPP/SLIP
idle timeouts started via exec sessions only: This workaround is to set an EXEC (idletime) timeout on an exec session which
is later used to start up PPP or SLIP (either via a TACACS+ autocommand or via the user explicitly invoking PPP or SLIP). In
this case, the exec idle timeout will correctly terminate an idle PPP or SLIP session. Note that this workaround cannot be used
for sessions which autoselect PPP or SLIP.

An idle timeout terminates a connection when the interface is idle for a given period of time (this is equivalent to the "session-
timeout" Cisco IOS configuration directive). The other timeouts are absolute. Of course, any timeouts set by TACACS+ apply
only to the current connection.

user = lol {
login = clear foobar
service = shell {

set idletime = 5 # disconnect lol if there is no traffic for 5 minutes
set timeout = 60 # disconnect lol unconditionally after one hour

}
}

You also need to configure exec authorization on the NAS for the above timeouts, e.g.

aaa authorization exec default group tacacs+

Note that these timeouts only work for async lines, not for ISDN currently.

Note also that you cannot use the authorization if-authenticated option with these parameters, since that skips autho-
rization if the user has successfully authenticated.

• How do I send VPDN forwarding decisions to an authorization server?
In 11.2 onwards, VPDN NASs can use TACACS+ to allow an authorization server to make the decision to forward users.

If VPDN forwarding is turned on, and the username is of the form user@domain, and domain matches a vpdn outgoing
configured domain, then an authorization attempt is made for domain (see below).

When making an authorization call for VPDN, a service type of ppp with a protocol type of vpdn, with a username of
domain will be made e.g. when a PPP user comes up on a line with the username foo@bar.com, if vpdn enable and
aaa authorization .... is enabled on the box, then a one-time authorization of the name bar.com is attempted.

If this authorization is successful, no local authentication is attempted on the NAS, and the connection is forwarded via VPDN
instead.

If no VPDN-specific information comes back from this authorization call, the login proceeds as follows:

If tacacs-server directed-requests are configured (note: this is true by default), then IOS will strip off the domain
part of a name of the form user@domain and use "domain" to try and select a TACACS+ server. If successful, the username
portion "user", without the domain, will be used for all subsequent authentication, authorization and accounting.

If directed requests are turned off, then the entire username user@domain is treated as a username.

vpdn specific information includes the attributes tunnel-id, source-ip (deprecated) and ip-addresses:

tunnel-id

This AV pair specifies the username that will be used to
authenticate the tunnel over which the individual user
MID will be projected. This is analogous to the "NAS
name" in the "vpdn outgoing" command.

ip-addresses

This is a list of possible IP addresses that can be used for
the end-point of the tunnel. Consult the text at the end of
this document for more details on how to configure this
attribute.
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source-ip

This is now deprecated. It began in release 11.2(1.4), and
was removed in 11.2(4.0.2). This ip address will be used
as the source of all VPDN packets generated as part of the
VPDN tunnel (see the source-ip keyword in the vpdn
outgoing command).

TACACS+ syntax
The following syntax is used:

user = domain {
service = ppp {
protocol = vpdn {
set tunnel-id = name for tunnel authentication
set ip-addresses = addr [addr ...]
set source-ip = ip-address

}
}

}

In addition the TACACS+ server can be used to store the usernames for both the NAS (the username specified by "tunnel-id"
above) and the Home Gateway. These will be used to authenticate the tunnel.

Example:

user = foobar.example.com {
service = ppp {
protocol = vpdn {
set tunnel-id = my_nas
set ip-addresses = "203.0.113.19 203.0.113.20"
set source-ip = 197.51.100.1

}
}

}

user = my_nas { chap = clear egad }

user = my_home_gateway { chap = clear wowser }

IOS Configuration
To enable AAA assisted VPDN forwarding on a NAS, the following minimum configuration is required:

vpdn enable
aaa new-model
aaa authorization network default group tacacs+ ...

In addition, if the passwords for the home gateway and NAS are stored on the TACACS+ daemon, the command

aaa authentication login default group tacacs+ ....

should also be present.

Beginning with release 11.2(1.4), the additional configuration

vpdn outgoing example.com ip NAS [ source-ip X.X.X.X ]

can be used. This changes in 11.2(4.0.2) and becomes:

vpdn source-ip X.X.X.X
vpdn outgoing example.com ip NAS
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• Can someone expand on the use of the optional keyword?
Most attributes are mandatory i.e. if the daemon sends them to the NAS, the NAS must obey them or deny the authorization.
This is the default. It is possible to mark attributes as optional, in which case a NAS which cannot support the attribute is free
to simply ignore it without causing the authorization to fail.

This was intended to be useful in cutover situations where you have multiple NASes running different versions of IOS, some
of which support more attributes than others. If you make the new attributes optional, older NASes could ignore the optional
attributes while new NASes could apply them. Note that this weakens your security a little, since you are no longer guaranteed
that attributes are always applied on successful authorization, so it should be used judiciously.

• Can I do do address pooling on the TACACS+ daemon?
Not really since nothing on the daemon tracks whether an address is already in use. The best way to manage address pools is
to define a non-overlapping pool of addresses on each NAS and return the name of this pool during authorization whenever a
user logs in e.g.

NAS:

ip local pool foo 1.0.0.1 1.0.0.10

Daemon:

user = lol { service = ppp { protocol = ip { set addr-pool = foo } } }

• What about MSCHAP?
The daemon contains mschap support. Mschap is configured the same way as chap, only using the mschap keyword in place
of the chap keyword.

Like ARAP, MSCHAP requires DES support. Use the --with-ssl flag when configuring the package.

8 Canned Configurations

Here are some canned configurations for getting demos started:

8.1 Login Authentication

A canned configuration for login authentication only. This allows user fred to login with password abcdef. If the TACACS+
server dies, the enable secret will be accepted as a login password instead.

Daemon:

id = spawnd {
listen = { port = 49 }

}
id = tac_plus {

host = any { key = "some key" address = 0.0.0.0/0 }

# repeat as necessary for each user
user = fred { login = clear abcdef }

}

NAS:

aaa new-model
enable secret foobar
! use TACACS+. If server dies, use the enable secret password
aaa authentication login default group tacacs+ enable
tacacs-server host ...
tacacs-server key some key
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8.2 Command Authorization

This will allow user fred to login with password abcdef and to run the privileged (level 15) commands write terminal
and configure. All other privileged commands will be denied.

The "none" keyword in the NAS configuration line means that if the TACACS+ server dies, any command will be allowed.

Daemon:

id = spawnd {
listen = { port = 49 }

}
id = tac_plus {

host = any { key = "some key" address = 0.0.0.0/0 }

# repeat as necessary for each user
user = fred {

login = clear abcdef
service = shell {

cmd = write { permit terminal }
cmd = configure { permit .* }

}
}

}

NAS:

aaa new-model
! all level 15 (privileged commands). If server dies, allow everything
aaa authorization commands 15 default group tacacs+ none
tacacs-server host 10.1.1.1
tacacs-server key some key

8.3 Network Access Authorization

This config allows fred to login to line 1 with password abcdef (or to and to run ppp using chap authentication. The chap
password is lab.

Daemon:

id = spawnd {
listen = { port = 49 }

}
id = tac_plus {

host = any { key = "some key" address = 0.0.0.0/0 }

# repeat as necessary for each user
user = fred {

login = clear abcdef
chap = clear lab
service = ppp { protocol = ip { set addr=1.0.0.2 } }

}
}

NAS:

aaa new-model
! authenticate exec logins (if not autoselecting)
aaa authentication login default group tacacs+
! authorize network services via TACACS+
aaa authorization network default group tacacs+
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! use TACACS+ for authenticating ppp users
aaa authentication ppp default group tacacs+
tacacs-server host 10.1.1.1
tacacs-server key some key
interface Async1
ip address 1.0.0.1 255.0.0.0
async default ip address 172.21.14.55
encapsulation ppp
async dynamic address
async mode interactive
! use chap to authenticate ppp users
ppp authentication chap
line 1
! need "modem inout" here and flow control if using a modem

8.4 ARAP

Daemon:

id = spawnd {
listen = { port = 49 }

}
id = tac_plus {

host = any { key = "some key" address = 0.0.0.0/0 }

user = lol {
arap = clear arapSecret
service = arap

}
}

NAS:

aaa new-model
aaa authentication arap default group tacacs+
aaa authorization network default group tacacs+
aaa accounting network default start-stop group tacacs+
!
appletalk routing
arap network ...
!
interface Ethernet0

appletalk cable-range ...
appletalk zone ...

!
tacacs-server host ...
tacacs-server key ...
!
line 1

location a modem
modem answer-timeout 0
modem InOut
autoselect arap
autoselect during-login
arap enable
speed ...
flowcontrol hardware
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8.5 Callback

Availability of Callback
Callback is available only in IOS 11.1 and later, and can only be controlled via TACACS+ for ASYNC lines. ISDN callback can
be configured on the NAS but cannot be controlled via AAA.

Here is an example of AAA configuration (with exec and network accounting enabled):

Daemon:

Example of remote TACACS+ server configuration file entry for username foobar:

id = spawnd {
listen = { port = 49 }

}
id = tac_plus {

host = any { key = "some key" address = 0.0.0.0/0 }

user = foobar {
arap = clear AAAA
login = clear LLLL
chap = clear CCCC
pap = clear PPPP
service = ppp {

default protocol = permit
protocol = lcp {

set callback-dialstring=123456
}

}
service = arap {

protocol = atalk {
set callback-dialstring=2345678

}
}
service = shell {

set callback-dialstring=3456789
set callback-line=7
set nocallback-verify=1

}
}

}

NAS:

aaa new-model
tacacs-server host XX.XX.XX.XX
tacacs-server key fookey
aaa accounting exec wait-start tacacs+
aaa accounting network wait-start tacacs+

! Example of AAA configuration for Exec:
aaa authentication login execcheck tacacs+
aaa authorization network tacacs+
service exec-callback

line 4
login authentication execcheck

! Example of AAA configuration for ARAP:
aaa authentication arap arapcheck tacacs+
aaa authorization network tacacs+
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arap callback

line 4
arap authentication arapcheck

! Example of AAA-specific configuration for PPP callback:
aaa new-model
aaa authentication ppp pppcheck tacacs+
aaa authorization network tacacs+

int async 6
ppp authentication chap pppcheck
ppp callback accept

9 Authorization AV pairs

The following authorization AV pairs specify which service is being authorized and are typically accompanied by protocol AV
pairs and other, additional pairs from the lists below. (For a complete and current list of supported AV pairs and required IOS
releases search http://www.cisco.com/ for "TACACS+ Attribute-Value Pairs".)

• service=arap

• service=shell

Used for exec startup, and also for command authorizations.

• service=ppp

• service=slip

• service=system

Not used

• service=raccess

Used for managing reverse telnet connections, e.g.:

user = jim {
login = clear lab

service = raccess {
set port#1 = nasname1/tty2
set port#2 = nasname2/tty5

}
}

Requires IOS configuration:

aaa authorization reverse-access default group tacacs+

See the IOS docs for more details.

• protocol=lcp

The lower layer of PPP, always brought up before IP, IPX, etc. is brought up.

• protocol=ip

Used with service=ppp and service=slip to indicate which protocol layer is being authorized.

• protocol=ipx

Used with service=ppp to indicate which protocol layer is being authorized.

http://www.cisco.com/
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• protocol=atalk

Used with service=ppp or service=arap.

• protocol=vines

For VINES over PPP.

• protocol=ccp

Authorization of CCP (Compression Control Protocol). No other av-pairs associated with this.

• protocol=cdp

Authorization of CDP (Cisco Discovery Protocol). No other av-pairs associated with this.

• protocol=multilink

Authorization of multilink PPP. See max-links and load-threshold.

• protocol=unknown

For undefined/unsupported conditions. Should not occur under normal circumstances.

• cmd (EXEC)

If the value of cmd is NULL e.g. the AV pair is cmd=, then this is an authorization request for starting an exec (shell). If cmd is
non-null, this is a command authorization request, It contains the name of the command being authorized, e.g. cmd=telnet.

• cmd-arg (EXEC)

During command authorization, the name of the command is given by an accompanying cmd= AV pair, and each command
argument is represented by a cmd-arg AV pair e.g. cmd-arg=archie.sura.net Note: cmd-arg should never appear
in a configuration file. It is used internally by the daemon to construct a string which is then matched against the regular
expressions which appear in a cmd clause in the configuration file.

• acl (ARAP, EXEC)

For ARAP this contains an access-list number. For EXEC authorization it contains an access-class number, e.g. acl=2. which
is applied to the line as the output access class equivalent to the configuration command

line ...
access-class 2 out

An outbound access-class is the best way to restrict outgoing telnet connections. Note that a suitable access list (in this case,
numbered 2) must be predefined on the NAS.

• inacl (PPP/IP/IPX)

This AV pair contains an IP or IPX input access list number for slip or PPP e.g. inacl=2. The access list itself must be
pre-configured on the Cisco box. Per-user access lists do not work with ISDN interfaces unless you also configure a virtual
interface. After 11.2(5.1)F, you can also use the name of a predefined named access list, instead of a number, for the value of
this attribute. Note: For IPX, inacl is only valid after 11.2(4)F.

• inacl#n (PPP/IP, PPP/IPX, 11.2(4)F)

This AV pair contains the definition of an input access list to be installed and applied to an interface for the duration of the
current connection, e.g.

inacl#1="permit ip any any precedence immediate"
inacl#2="deny igrp 0.0.1.2 255.255.0.0 any"

Attributes are sorted numerically before they are applied. For IP, standard OR extended access list syntax may be used, but it
is an error to mix the two within a given access-list. For IPX, only extended access list syntax may be used. See also:

sho ip access-lists
sho ip interface
sho ipx access-lists
sho ipx interface
debug aaa author
debug aaa per-user
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• outacl (PPP/IP, PPP/IPX)

This AV pair contains an IP or IPX output access list number for SLIP. PPP/IP or PPP/IPX connections e.g. outacl=4. The
access list itself must be pre-configured on the Cisco box. Per-user access lists do not work with ISDN interfaces unless you
also configure a virtual interface. PPP/IPX is supported in 11.1 onwards only. After 11.2(5.1)F, you can also use the name of
a predefined named access list, as well as a number, for the value of this attribute.

• outacl#n (PPP/IP, PPP/IPX, 11.2(4)F)

This AV pair contains an output access list definition to be installed and applied to an interface for the duration of the current
connection, e.g.

outacl#1="permit ip any any precedence immediate"
outacl#2="deny igrp 0.0.9.10 255.255.0.0 any"

Attributes are sorted numerically before they are applied. For IP, standard OR extended access list syntax may be used, but it
is an error to mix the two within a given access-list. For IPX, only extended access list syntax may be used.

See also:

sho ip access-lists
sho ip interface
sho ipx access-lists
sho ipx interface
debug aaa author
debug aaa per-user

• addr (SLIP, PPP/IP)

The IP address the remote host should be assigned when a slip or PPP/IP connection is made e.g. addr=1.2.3.4.

• routing (SLIP, PPP/IP)

Equivalent to the /routing flag in slip and ppp commands. Can have as its value the string true or false.

• timeout (11.0 onwards, ARAP, EXEC)

Sets the time until an arap or exec session disconnects unconditionally (in minutes), e.g. timeout=60.

• autocmd (EXEC)

During exec startup, this specifies an autocommand, like the autocommand option to the username configuration command,
e.g. autocmd="telnet foo.com".

• noescape (EXEC)

During exec startup, this specifies "noescape", like the noescape option to the username configuration command. Can have as
its value the string true or false, e.g. noescape=true.

• nohangup (EXEC)

During exec startup, this specifies nohangup, like the nohangup option to the username configuration command. Can have
as its value the string true or false, e.g. nohangup=true.

• priv-lvl (EXEC)

Specifies the current privilege level for command authorizations, a number from zero to 15 e.g. priv-lvl=5. Note: in 10.3
this attribute was priv_lvl i.e. it contained an underscore instead of a hyphen.

• zonelist (ARAP)

An Appletalk zonelist for arap equivalent to the line configuration command arap zonelist, e.g. zonelist=5.

• addr-pool (11.0 onwards, PPP/IP, SLIP)

This AV pair specifies the name of a local pool from which to get the IP address of the remote host. Note: addr-pool works
in conjunction with local pooling. It specifies the name of a local pool (which needs to be pre-configured on the NAS). Use the
ip-local pool command to declare local pools, e.g on the NAS:
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ip address-pool local ip local pool foo 1.0.0.1 1.0.0.10
ip local pool baz 2.0.0.1 2.0.0.20

Then you can use TACACS+ to return addr-pool=foo or addr-pool=baz to indicate which address pool you want to
get this remote node’s address from, e.g. on the daemon:

user = lol { service = ppp { protocol = ip { set addr-pool=foo } }

• route (11.1 onwards, PPP/IP, SLIP).

This AV pair specifies a route to be applied to an interface. During network authorization, the "route" attribute may be used to
specify a per-user static route, to be installed via TACACS+. The daemon side declaration is:

service = ppp {protocol=ip{set route="dst_addr mask [ gateway ]"}}

This indicates a temporary static route that is to be applied. dst_address, mask and gateway are expected to be in the usual
dotted-decimal notation, with meanings the same as for the familiar ip route configuration command on a NAS. If gateway
is omitted, the peer’s address is taken to be the gateway. The route is expunged once the connection terminates.

• route#n (PPP/IP/IPX, 11.2(4)F)

Same as the route attribute, except that these are valid for IPX as well as IP, and they are numbered, allowing multiple routes
to be applied e.g.

route#1="3.0.0.0 255.0.0.0 1.2.3.4"
route#2="4.0.0.0 255.0.0.0"

or, for IPX,

route#1="4C000000 ff000000 30.12.3.4"
route#2="5C000000 ff000000 30.12.3.5"

See also:

sho ip route
sho ipx route
debug aaa author
debug aaa per-user

• callback-rotary (11.1 onwards, valid for ARAP, EXEC, SLIP or PPP)

The number of a rotary group (between 0 and 100 inclusive) to use for callback e.g. callback-rotary=34. Not valid for
ISDN.

• callback-dialstring (11.1 onwards, valid for ARAP, EXEC, SLIP or PPP)

sets the telephone number for a callback e.g. callback-dialstring=408-555-1212. Not valid for ISDN.

• callback-line (11.1 onwards, valid for ARAP, EXEC, SLIP or PPP)

The number of a tty line to use for callback e.g. callback-line=4. Not valid for ISDN.

• nocallback-verify (11.1 onwards, valid for ARAP, EXEC)

Indicates that no callback verification is required. The only valid value for this parameter is the digit one i.e. nocallback-verify=1.
Not valid for ISDN.

• idletime (11.1 onwards, EXEC)

Sets a value, in minutes, after which an IDLE session will be terminated. Note: Does NOT work for PPP.

• tunnel-id (11.2 onwards, PPP/VPDN)

This AV pair specifies the username that will be used to authenticate the tunnel over which the individual user MID will be
projected. This is analogous to the "NAS name" in the vpdn outgoing command.
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• ip-addresses (11.2 onwards, PPP/VPDN)

This is a space separated list of possible IP addresses that can be used for the end-point of the tunnel. In 11.2(5.4)F, this
attribute was extended as follows:

1. comma (’,’) is also considered as a delimiter. For example the avpair can now be written as

ip-addresses = 172.21.9.26,172.21.9.15,172.21.9.4

2. slash (’/’) is considered a priority delimiter. When you have a number of Home Gateway routers, it is desirable to
consider some as the primary routers and some as backup routers. ’/’ allow you to config the routers into priority groups,
so that the NAS will try to forward the users to the high priority routers, before forwarding to the low priority one.
For example in the following av-pair:

ip-addresses = "172.21.9.26 / 172.21.9.15 / 172.21.9.4"

172.21.9.26 is considered to be priority 1,
172.21.9.15 is considered to be priority 2,
172.21.9.4 is considered to be priority 3.
The NAS will try to forward the users to 172.21.9.26, before trying 172.21.9.15. If the NAS can’t forward users to
172.21.9.26, it will try 172.21.9.15 next. If it fails with 172.21.9.15, it will then try forwarding to 172.21.9.4.

• source-ip (PPP/VPDN, now deprecated, only existed in releases 11.2(1.4) thru 11.2(4.0.2))

This specifies a single ip address will be used as the source of all VPDN packets generated as part of the VPDN tunnel (see the
equivalent source-ip keyword in the IOS vpdn outgoing command).

• nas-password (PPP/VPDN, 11.2(3.4)F, 11.2(4.0.2)F)

During L2F tunnel authentication, nas-password specifies the password for the NAS.

• gw-password (PPP/VPDN, 11.2(3.4)F, 11.2(4.0.2)F)

During L2F tunnel authentication, gw-password specifies the password for the home gateway.

• rte-ftr-in#n (PPP -- IP/IPX, 11.2(4)F)

This AV pair specifies an input access list definition to be installed and applied to routing updates on the current interface, for
the duration of the current connection. For IP, both standard and extended Cisco access list syntax is recognised, but it is an
error to mix the two within a given access-list. For IPX, only Cisco extended access list syntax is legal. Attributes are sorted
numerically before being applied. For IP, the first attribute must contain the name of a routing process and its identifier (except
for rip, where no identifier is needed), e.g.

rte-fltr-in#0="router igrp 60"
rte-fltr-in#1="permit 0.0.3.4 255.255.0.0"
rte-fltr-in#2="deny any"

For IPX, no routing process is needed, e.g.

rte-fltr-in#1="deny 3C01.0000.0000.0001"
rte-fltr-in#2="deny 4C01.0000.0000.0002"

See also:

show ip access-lists
show ip protocols
sho ipx access-lists
sho ipx interface
debug aaa author
debug aaa per-user

router ...
[no] distribute-list ...

ipx input-network-filter ...
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• rte-ftr-out#n (PPP/IP, 11.2(4)F)

This AV pair specifies an input access list definition to be installed and applied to routing updates on the current interface, for
the duration of the current connection. For IP, both standard and extended Cisco access list syntax is recognised, but it is an
error to mix the two within a given access-list. Attributes are sorted numerically before being applied. The first attribute must
contain the name of a routing process and its identifier (except for rip, where no identifier is needed), e.g.

rte-fltr-out#0="router igrp 60"
rte-fltr-out#3="permit 0.0.5.6 255.255.0.0"
rte-fltr-out#4="permit any"

For IPX, no routing process is specified, e.g.

rte-fltr-out#1="deny 3C01.0000.0000.0001"
rte-fltr-out#2="deny 4C01.0000.0000.0002"

See also:

sho ipx access-lists
sho ipx interface
show ip access-lists
show ip protocols
debug aaa author
debug aaa per-user

router ...
[no] distribute-list ...

ipx output-network-filter ...

• sap#n (11.2(4)F PPP/IPX)

This AV pair specifies static saps to be installed for the duration of a connection e.g.

sap#1="4 CE1-LAB 1234.0000.0000.0001 451 4"
sap#2="5 CE3-LAB 2345.0000.0000.0001 452 5"

The syntax of static saps is the same as that used by the IOS ipx sap command.

See also:

sho ipx servers
debug aaa author
debug aaa per-user
[no] ipx sap ...

• route#n (PPP/IP/IPX, 11.2(4)F)

Same as the route attribute, except that these are valid for IPX as well as IP, and they are numbered, allowing multiple routes
to be applied e.g.

route#1="3.0.0.0 255.0.0.0 1.2.3.4"
route#2="4.0.0.0 255.0.0.0"

or, for IPX,

route#1="4C000000 ff000000 30.12.3.4"
route#2="5C000000 ff000000 30.12.3.5"

See also:

sho ip route
sho ipx route
debug aaa author
debug aaa per-user
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• sap-fltr-in#n (PPP/IPX, 11.2(4)F)

This AV pair specifies an input sap filter access list definition to be installed and applied on the current interface, for the
duration of the current connection. Only Cisco extended access list syntax is legal, e.g

sap-fltr-in#1="deny 6C01.0000.0000.0001"
sap-fltr-in#2="permit -1"

Attributes are sorted numerically before being applied.

See also:

sho ipx access-lists
sho ipx interface
debug aaa author
debug aaa per-user
ipx input-sap-filter ...

• sap-fltr-out#n (PPP/IPX 11.2(4)F)

This AV pair specifies an output sap filter access list definition to be installed and applied on the current interface, for the
duration of the current connection. Only Cisco extended access list syntax is legal, e.g

sap-fltr-out#1="deny 6C01.0000.0000.0001"
sap-fltr-out#2="permit -1"

Attributes are sorted numerically before being applied.

See also:

sho ipx access-lists
sho ipx interface
debug aaa author
debug aaa per-user
ipx output-sap-filter ...

• pool-def#n (PPP/IP, 11.2(4)F)

This attribute is used to define ip address pools on the NAS. During IPCP address negotiation, if an ip pool name is specified
for a user (see the addr-pool attribute), a check is made to see if the named pool is defined on the NAS. If it is, the pool is
consulted for an ip address. If the required pool is not present on the NAS (either in the local config, or as a result of a previous
download operation), then an authorization call to obtain it is attempted, using the special username:

nas-name-pools

where nas-name is the configured name of the NAS. Note: This username can be changed using the IOS configuration directive
e.g.

aaa configuration config-name nas1-pools-definition.cisco.us

The pool-def attribute is used to define ip address pools for the above authorization call e.g.

user = foo {
login = clear lab
service = ppp { protocol = ip { set addr-pool=bbb } }

}

user = nas1-pools {
service = ppp {

protocol = ip {
set pool-def#1 = "aaa 1.0.0.1 1.0.0.3"

set pool-def#2 = "bbb 2.0.0.1 2.0.0.10"
set pool-def#3 = "ccc 3.0.0.1 3.0.0.20"
set pool-timeout = 60

}
}

}
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In the example above is a configuration file fragment for defining 3 pools named aaa, bbb and ccc on the NAS named
nas1. When the user foo refers to the pool named bbb, if the pool bbb isn’t defined, the NAS will attempt to download the
definition contained in the nas1-pools entry. The other pools will also be defined at the same time (or they will be ignored
if they are already defined). Since this procedure is only activated when an undefined pool is referenced, one way to redefine a
pool once it has been downloaded is to manually delete the definition e.g. by logging into the NAS, enabling, and configuring:

config t
no ip local pool bbb
^Z

When a pool is deleted, there is no interruption in service for any user who is currently using a pool address. If a pool is
deleted and then subsequently redefined to include a pool address that was previously allocated, the new pool will pick up the
allocated address and track it as expected. Since downloaded pools do not appear in the NAS configuration, any downloaded
pool definitions automatically disappear whenever a NAS reboots. These pools are marked as "dynamic" when they appear
in the output of the show ip local pools NAS command. Since it is desirable not to have to manually delete pools to
redefine them, the AV pair pool-timeout=n can be used to timeout any downloaded pool definitions. The timeout n is in
minutes. The effect of the pool-timeout attribute is to start a timer when the pool definitions are downloaded. When the
timer expires, the pools are deleted. The next reference to a deleted pool via will cause a re-fetch of the pool definitions. This
allows pool changes to be made on the daemon and propagated to the NAS in a timely manner. See also:

sho ip local pool ...
ip local pool ...

• old-prompts (PPP/SLIP)

This attribute allows providers to make the prompts in TACACS+ appear identical to those of earlier systems (TACACS
and XTACACS). This will allow administrators to upgrade from TACACS/XTACACS to TACACS+ transparently to users.
The difference between the prompts is as follows: In XTACACS, when the user types slip or ppp the system prompts
for an address followed by a password, whereas TACACS+ prompts only for an address. In XTACACS, if the user types
slip host or ppp host, the system prompts for a password. In TACACS+, there is no prompt. Using this attribute,
TACACS+ can be made to mimic the prompting behaviour of xtacacs, by configuring network authorization on IOS, and using
the old-prompts=true attribute value pair for slip and ppp/ip, viz:

user = joe {
service = shell { }
service = slip {

default attribute = permit
set old-prompts=true

}
service = ppp {

protocol = ip {
default attribute = permit
set old-prompts=true

}
}

}

i.e. the prompts are controlled by the addition of the old-prompts=true attribute.

• max-links (PPP/multilink - Multilink parameter; 11.3)

This AV pair restricts the number of multilink bundle links that a user can have. The daemon side declaration is:

service=ppp { protocol=multilink { set max-links=n } }

The range of n is [1-255].

Related NAS commands:

int foo
[no] ppp multilink

int virtual-template X
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multilink max-links n
show ppp multilink
debug multilink

• load-threshold (PPP/multilink - Multilink parameter; 11.3)

This AV pair sets the load threshold at which an additional multilink link is added to the bundle (if load goes above) or deleted
(if load goes below). The daemon side declaration is:

service=ppp { protocol=multilink { set load-threshold=n } }

The range of n is [1-255]. Related NAS commands:

int foo
[no] ppp multilink

int virtual-template X
multilink load-threshold n

show ppp multilink

debug multilink

• ppp-vj-slot-compression

Reserved for future use.

• link-compression

Reserved for future use.

• asyncmap

Reserved for future use.

• x25-addresses (PPP/VPDN)

Reserved for future use.

• frame-relay (PPP/VPDN)

Reserved for future use.

10 Upgrading from Previous Releases

There may be some caveats to consider if you’re using a previous version of the software:

• 16-08-2009: To use the MAVIS backend for users not defined in the local configuration file, user backend = mavis is
now required.

• 13-06-2010: LDAP functionality was merged into a single script, requiring the environmental variable LDAP_SERVER_TYPE
to be set to generic if you were using the mavis_tacplus_ldap_authonly.pl script, to tacplus_schema for
functionality equivalent to mavis_tacplus_ldap.pl, and to microsoft for mavis_tacplus_ads.pl functional-
ity.

11 Bugs

• There may still be some nasty bugs lurking in the code. Please contact the author via the "Event-Driven Servers" Google Group
at event-driven-servers@googlegroups.com or http://groups.google.com/group/event-driven-servers if you think you’ve found
one.

mailto:event-driven-servers@googlegroups.com
http://groups.google.com/group/event-driven-servers
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• This documentation isn’t well structured.

• The examples given are too IPv4-centric. However, the daemon handles IPv6 just fine.

• Some of the NAS configuration examples aren’t recently tested. Refer to the IOS documentation for IOS configuration syntax
guidance.

12 References

• draft-grant-tacacs-02.txt - The TACACS+ Protocol (Version 1.78)

• RFC8907: The Terminal Access Controller Access-Control System Plus (TACACS+) Protocol

13 Copyrights and Acknowledgements

Please see the source for copyright and licensing information of individual files.

• The following applies if the software was compiled with OpenSSL support:
This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

• MD4 algorithm:
The software uses the RSA Data Security, Inc. MD4 Message-Digest Algorithm.
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The software uses the RSA Data Security, Inc. MD5 Message-Digest Algorithm.

• If the software was compiled with PCRE (Perl Compatible Regular Expressions) support, the following applies:
Regular expression support is provided by the PCRE library package, which is open source software, written by Philip Hazel,
and copyright by the University of Cambridge, England. (ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/).

• The original tac_plus code (which this software and considerable parts of the documentation are based on) is distributed
under the following license:
Copyright (c) 1995-1998 by Cisco systems, Inc.

Permission to use, copy, modify, and distribute this software for any purpose and without fee is hereby granted, provided that
this copyright and permission notice appear on all copies of the software and supporting documentation, the name of Cisco
Systems, Inc. not be used in advertising or publicity pertaining to distribution of the program without specific prior permission,
and notice be given in supporting documentation that modification, copying and distribution is by permission of Cisco Systems,
Inc.

Cisco Systems, Inc. makes no representations about the suitability of this software for any purpose. THIS SOFTWARE IS
PROVIDED ``AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMI-
TATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

• The code written by Marc Huber is distributed under the following license:
Copyright (C) 1999-2022 Marc Huber (Marc.Huber@web.de). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:

https://tools.ietf.org/html/draft-grant-tacacs-02
https://tools.ietf.org/html/rfc8907
http://www.openssl.org/
mailto:eay@cryptsoft.com
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/
mailto:Marc.Huber@web.de
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This product includes software developed by Marc Huber (Marc.Huber@web.de).

Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear.

THIS SOFTWARE IS PROVIDED ``AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ITS AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS IN-
TERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

mailto:Marc.Huber@web.de
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