
spawnd

Marc Huber

spawnd ii

COLLABORATORS

TITLE :

spawnd

ACTION NAME DATE SIGNATURE

WRITTEN BY Marc Huber February 10, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

spawnd iii

Contents

1 Introduction 1

1.1 Download . 1

2 Operation 1

2.1 Command line syntax . 1

3 Configuration file syntax 1

3.1 Railroad Diagrams . 5

4 Signals 7

5 Load balancing algorithm 7

6 Event mechanism selection 7

7 Sample configuration 8

8 Startup examples 8

8.1 Manual startup . 8

8.2 Startup on demand . 8

8.2.1 inetd . 9

8.2.2 xinetd . 9

8.2.3 launchd . 9

8.3 Startup at system boot . 10

8.3.1 Init scripts . 10

8.3.2 launchd . 10

8.3.3 systemd . 11

9 Copyrights and Acknowledgements 11

spawnd 1 / 12

1 Introduction

spawnd is a broker with load-balancing functionality that listens for incoming TCP (or SCTP) connections on IP, UNIX or
possibly IPv6 sockets, accepts them and finally forwards them (using ancillary messages over UNIX domain sockets) to the
spawned server processes.

1.1 Download

You can download the source code from the GitHub repository at https://github.com/MarcJHuber/event-driven-servers/. On-line
documentation is available via https://projects.pro-bono-publico.de/event-driven-servers/doc/, too.

2 Operation

spawnd is now actually implemented as a shared library, and the programs that had to be invoked by it are now utilizing that
library and are, as such, standalone. This in no way implies that spawnd configuration would be obsolete; only the binary is.

2.1 Command line syntax

Command line syntax is:

spawnd [-b | -f] [-p pidfile-name] [-P] [-d level] configuration-file [id]

The path to the configuration file is the only command line argument mandatory. If compiled with CURL support, configuration-
file may be an URL.

id defaults to spawnd. It may be used to select a non-default section of the configuration file.

The -b switch will tell the daemon to release its controlling terminal on startup and fork itself to the background (just like
background = yes in the configuration does, but with higher precedence). Likewise, -f keeps the daemon from forking to
the background.

The -p pidfile-name option is equivalent to the pidfile = pidfile-name configuration directive.

The -P option enables config parse mode. Keep this one in mind; it is imperative that the configuration file supplied is syntacti-
cally correct, as the daemon won’t start if there are any parsing errors at start-up.

The -d switch enables debugging. You most likely don’t want to use this. Read the source if you need to.

3 Configuration file syntax

A typical spawnd configuration file consists of multiple id sections: one for spawnd itself, and one for the spawned server
process (e.g. tac_plus or ftpd. The actual configuration section used is, by default, the one named after the program evaluating
the configuration file. However, a different section may be selected by specifying an id parameter via command line or spawnd
directive.

id = subIdentifier {

SubIdentifierConfig

}

Railroad diagram: Config

For example, have a look at the following configuration snippet:

id = spawnd { exec = /path/to/ftpd }
id = spawnd2 { exec = /path/to/ftpd id = myftpd }
id = myftpd { }
id = ftpd { }

https://github.com/MarcJHuber/event-driven-servers/
https://projects.pro-bono-publico.de/event-driven-servers/doc/

spawnd 2 / 12

A spawnd started with this will default to evaluating the id = spawnd section, and any ftpd instance started will default to
the corresponding ftpd stanza. However, starting spawnd with an additional argument, e.g.

/path/to/spawnd /path/to/configuration_file spawnd2

will choose the spawnd2 section instead, which in turn tells the ftpd to evaluate the myftpd part of the configuration.

Comments within configuration files start with #. At top-level, other configuration files may be included using include = file
syntax. Glob pattern matching applies (typical sh(1) wildcards are evaluated).

All the configuration directives given below need to be enclosed in an appropriate id { ... } section.

• (permit | deny) [not] cidr

Accept or reject request from specific IP address ranges. This directive may appear multiple times. Matches are tried in order.
IPv6 ACLs are supported. Default is to accept everything.

Example:

permit 127.0.0.1/8
deny 192.168.5.0/8
permit 192.168.0.0/16
acl accept ::1

• background = (yes | no)

If set, the daemon will release its controlling terminal on startup and fork itself to the background (default: no).

• listen { ... }

This directives determines the connection end points the daemon is listening on. For IP, valid configuration directives inside
the curly brackets are:

– port = TCPPort
TCPPort can be either numerical or a service name.

– address = IPAddress
This is optional; by default the daemon listens on all available IP addresses, both v4 and v6.

– protocol = (TCP | SCTP)
Default protocol is TCP.

– bind retry delay = Seconds
On bind(2) failure, wait the specified number of Seconds, then try again. Default: 0 seconds (no retries).

For listening on UNIX domain sockets, a different syntax applies:

– path = Path
This directive specifies the path to the UNIX domain socket.

– mode = Mode
This sets the file creation mode.

– userid = UserID
This specifies the user ID for socket creation.

– groupid = GroupID
This specifies the group ID for socket creation.

Directives which may be used in both cases are:

– tls = (yes | no)
This directive tells a child process if the connection is encrypted using TLS.

– haproxy = (yes | no)
This directive tells a child process whether the connection is permitted to use the haproxy protocol (currently tac_plus-ng
only).

spawnd 3 / 12

– backlog = Number
This sets the maximum number of pending connections (default: 128); see listen(2) for details.

– overload backlog = Number
This sets the maximum number of pending connections in overload situations (default: 128); see listen(2) for details.

– realm = String
Sends String to the client process when forwarding a connection. The client process may be able to use this value to
differentiate between connection endpoints. Use this option only with clients that actually support it (currently: tac_plus).

– vrf = id
Sets the VRF to id on systems that support it. id is the VRF name on Linux, or the numeric VRF id on OpenBSD.

– bind retry delay = Seconds
On bind(2) failure, wait the specified number of Seconds, then try again. Defaults to the global bind retry delay
value.

– tcp keepalive (count | idle | interval) = Number
Sets various options for TCP keepalive probes, if supported by the operating system.

– tcp bufsize Number
Overrides the system default input/output buffer sizes (SO_SNDBUF, SO_RCVBUF) for communication with child pro-
cesses.

The listen directive is mandatory unless the daemon is started via an inetd(8) (or compatible) process, in which case

– the inetd wait option needs to be used

– argv[0] needs to be the absolute path to the binary

For standard inetd(8), configuration syntax for ftpd or any other spawnd compliant application would look like:

ftp stream tcp wait root /usr/local/sbin/ftpd /usr/local/sbin/ftpd /usr/local/etc/ftpd. ←↩
cfg

or, with explicit specification of the spawned program’s name in the configuration,

ftp stream tcp wait root /usr/local/sbin/spawnd ftpd -f /usr/local/etc/ftpd.cfg

The equivalent xinetd(8) would (or could) be:

service ftp
{

flags = NAMEINARGS NOLIBWRAP
socket_type = stream
protocol = tcp
wait = yes
user = root
server = /usr/local/sbin/ftpd
server_args = /usr/local/sbin/ftpd -f /usr/local/etc/ftpd.cfg
instances = 1

}

• pidfile = file

The process id will be written to file.

• spawn { ... }

The spawn section defines various aspects related to the actual server processes:

– exec = Path
Defines the path the server process. This is mandatory when running the standalone spawnd process, but may be omitted
else.
Magic cookie substitution applies. The available conversions are

spawnd 4 / 12

* %o - run-time OS type

* %O - compile-time OS type

The "OS type" string inserted is identical to the output of:

uname -srm | tr ’ [:upper:]’ ’\-[:lower:]’

Example: For "Linux 2.3.35 i686",

exec = /some/where/%O/ftpd

resolves to

exec = /some/where/linux-2.3.35-i686/ftpd

– id = ID
Optionally defines a different ID for configuration file parsing. Defaults to the executables basename.

– config = ConfigurationFile
Optionally assigns a configuration file. Defaults to the configuration file spawnd is started with.

– instances (min | max) = Number
Sets the minimum or maximum number of server processes to start. Defaults to 2 and 8.

– sticky cache period = Seconds
This option tells the daemon to try to forward all connections from a particular source address to the same worker process.
Defaults to 0 (disabled).

– sticky cache size = Number
This option sets the maximum number of entries in the "sticky" cache. Defaults to 1024.

– users (min | max) = Number
This directive limits the number of users per process. The distribution algorithm attempts to assign at least min (default: 5)
and at most max (default: 40) users to each process, while attempting to keep the total number of processes at a reasonable
limit.
The spawned processes may have their own idea about the maximum number of users permitted and may lower the specified
maximum number of users to a more suitable value.

– userid = UserID
Change UID to UserID for spawned processes.

– groupid = GroupID
Change GID to GroupID for spawned processes.

– working directory = Directory
Change directory to Directory for spawned processes.

– ipc key = Number
If this is set and the program was compiled with IPC support, then the configuration file will be cached in a shared memory
segment and will only be loaded once. This may be of advantage if the configuration file given as an URL that will be
retrieved using CURL.

• overload = (close | queue | reset)

If the maximum number of users is reached, either close, reset or queue new connections. The latter is the default.

• tcp keepalive (count | idle | interval) = Number

Sets various options for TCP keepalive probes, if supported by the operating system.

• syslog ((ident = Ident) | (severity = Level) | (facility = Facility))

Selects syslog ident, severity and facility. Defaults to:

syslog ident = program-name
syslog facility = UUCP
syslog severity = INFO

spawnd 5 / 12

• single process = (yes | no)

Changes the execution model to single process mode. Connections will be accepted and processed by one single instance of
the process, and not, as it’s the default, be forwarded to child processes. Useful for systems that lack file descriptor passing
capabilities.

Default: yes (and not changeable) on Cygwin, no everywhere else.

3.1 Railroad Diagrams

id = spawnd

{ Debug

SyslogDecl

AclDecl

MiscDecl

ListenDecl

ChildDecl

}

Railroad diagram: SpawndConfig

listen { address = ipAddress

port = tcpPort

path = path

userid = userID

groupid = groupID

tls = yes

no

haproxy = yes

no

bind retry delay = seconds

backlog = number

tcp keepalive idle

interval

count

= number

}

Railroad diagram: ListenDecl

spawnd 6 / 12

spawn { exec = pathToExecutable

id = subIdentifier

config = pathToConfig

instances min

max

= number

users min

max

= number

userid = uidNumber

groupid = gidNumber

sticky cache timeout = number

sticky cache period = seconds

ipc key = number

}

Railroad diagram: Child

permit

deny

not CIDR

Railroad diagram: AclDecl

internetAddress / maskLen

internetMask

Railroad diagram: CIDR

overload = queue

close

reset

bind retry delay = seconds

single process = yes

no

background = yes

no

tcp keepalive idle

interval

count

= number

tcp bufsize = number

pidfile = pathToPIDFile

Railroad diagram: MiscDecl

syslog facility

severity

ident

= string

Railroad diagram: SyslogDecl

spawnd 7 / 12

number

ACL

CONFIG

LOG

NONE

FORK

PARSE

Railroad diagram: Debug

4 Signals

spawnd will terminate upon receiving a SIGTERM or SIGINT signal. SIGHUP will cause spawnd to restart itself from scratch.

The daemon is only checking for signals every couple of seconds, so actions aren’t necessarily immediate.

5 Load balancing algorithm

spawnd allows configuration of upper and lower limits for users and processes. The distribution algorithm will try to assign new
connections to one of the running servers with less than users_min connections. If all servers already have at least users_min
active connections and the total number of servers doesn’t exceed servers_max, an additional server process is started, and the
connection is assigned to that process. If no more processes may be started, the connection is assigned to the server process with
less than users_max users, which serves the lowest number of connections. Otherwise, the connection will stall until an existing
connection terminates.

If the sticky feature is enabled, spawnd will try to assign connections to server processes based on the remote IP address of the
peer. Please not that this will not work in combination with HAProxy.

6 Event mechanism selection

Several level-triggered event mechanisms are supported. By default, the one best suited for your operating system will be used.
However, you may use the environment variable IO_POLL_MECHANISM to select a specific one.

The following event mechanisms are supported (in order of preference):

• port (Sun Solaris 10 and higher only, IO_POLL_MECHANISM=32)

• kqueue (*BSD and Darwin only, IO_POLL_MECHANISM=1)

• /dev/poll (Sun Solaris only, IO_POLL_MECHANISM=2)

• epoll (Linux only, IO_POLL_MECHANISM=4)

• poll (IO_POLL_MECHANISM=8)

• select (IO_POLL_MECHANISM=16)

Environment variables can be set in the configuration file at top-level:

setenv IO_POLL_MECHANISM = 4

spawnd 8 / 12

7 Sample configuration

id = spawnd {
listen { port 21 }
listen { address = ::0 port = 2121 tls }
spawn {

users minimum = 10
users maximum = 100
instances minimum = 10
instances maximum = 100
exec = /usr/local/libexec/ftpd
id = ftpd
config = /usr/local/etc/ftpd.conf

}
background = true

}

8 Startup examples

spawnd (either standalone, or utilized via the MAVIS library, which is what ftpd, tac_plus and tcprelay do) is a long-running
process. It may be started either manually, on demand, or at system boot time.

The examples in this section focus on tac_plus, but are easily adaptable to the ftpd and tcprelay daemons.

8.1 Manual startup

Starting a daemon manually is fine for testing, but, generally, undesireable for production. A configuration file that specifies at
least a port the daemon should listen to is required:

id = spawnd {
listen {

port = 49
}

}
id = tac_plus {

...
}

Copy this to, e.g., ./tac_plus.cfg, then start the daemon:

/usr/local/sbin/tac/plus ./tac_plus.cfg

The daemon will now run in the foreground, blocking your shell until interrupted or being send to the background. If you want
to run the daemon in the background, you can either add

background = yes

to the spawnd section, or use the -b command line option:

/usr/local/sbin/tac/plus -b /usr/local/etc/tac_plus.cfg

8.2 Startup on demand

The daemon may be started on demand by inetd(8) or compatible applications. The configuration file should not specify a
port to bind to, as inetd will pass an already bound socket to the daemon:

spawnd 9 / 12

id = spawnd {
listen {
}

}
id = tac_plus {

...
}

8.2.1 inetd

For stock inetd, adding the following line to /etc/inetd.conf and sending a HUP to inetd will activate the daemon:

tacacs stream tcp wait root /usr/local/sbin/tac_plus /usr/local/sbin/tac_plus /usr/local ←↩
/etc/tac_plus.cfg

8.2.2 xinetd

The equivalent xinetd(8) configuration:

service tacacs
{

flags = NAMEINARGS NOLIBWRAP
socket_type = stream
protocol = tcp
wait = yes
user = root
server = /usr/local/sbin/tac_plus
server_args = /usr/local/sbin/tac_plus /usr/local/etc/tac_plus.cfg
instances = 1

}

Depending on your setup this could either be added to /etc/xinetd.conf or be written to /etc/xinetd.d/tacacs.

8.2.3 launchd

Mac OS X comes with launchd(8), and here’s a suitable /Library/LaunchDaemons/de.pro-bono-publico.tac_plus.plist:

<xml version="1.0" encoding="UTF-8"?>
<DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/ ←↩

PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>Label<key>
<string>de.pro-bono-publico.tac_plus<string>
<key>ProgramArguments<key>
<array>

<string>/usr/local/sbin/tac_plus<string>
<string>-p<string>
<string>/var/run/tac_plus.pid<string>
<string>/usr/local/etc/tac_plus.cfg<string>

<array>
<key>KeepAlive<key> <true/>
<key>Sockets<key>

<dict>
<key>Listeners<key>
<dict> <key>SockServiceName<key> <string>tacacs<string> <dict>

<dict>

spawnd 10 / 12

<key>inetdCompatibility<key>
<dict> <key>Wait<key> <true/> <dict>

<key>KeepAlive<key>
<dict> <key>NetworkState<key> <true/> <dict>

<dict>
<plist>

This needs to be activated using

sudo launchctl load -w /Library/LaunchDaemons/de.pro-bono-publico.tac_plus.plist

The daemon will write its process id to /var/run/tac_plus.pid, and

sudo kill ‘cat /var/run/tac_plus.pid‘

will cause it to restart (and, implicitly, to re-read the configuration file).

8.3 Startup at system boot

The daemons may be started at system boot time. Alas, that’s very specific to your system. You should definitely know what
you’re doing, or you may render your system unbootable.

8.3.1 Init scripts

The distribution comes with a couple of System V style init scripts, e.g. tac_plus/doc/etc_init.d_tac_plus. Copy
this script to a location appropriate to your system (e.g. /etc/init.d/tac_plus and create the relevant symbolic or
hardlinks. See your systems documentation for details.

8.3.2 launchd

On MacOS, create a file /Library/LaunchDaemons/de.pro-bono-publico.tac_plus.plist that consists of:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/ ←↩

PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>Label</key>
<string>de.pro-bono-publico.tac_plus</string>
<key>ProgramArguments</key>
<array>

<string>/usr/local/sbin/tac_plus</string>
<string>-f</string>
<string>-p</string>
<string>/var/run/tac_plus.pid</string>
<string>/usr/local/etc/tac_plus.cfg</string>

</array>
<key>KeepAlive</key>

<dict> <key>NetworkState</key> <true/> </dict>
</dict>
</plist>

Then tell launchd about this configuration:

sudo launchctl load -w /Library/LaunchDaemons/de.pro-bono-publico.tac_plus.plist

The daemon will write its process id to /var/run/tac_plus.pid, and you may make it re-read its configuration file by
issuing

sudo kill -HUP ‘cat /var/run/tac_plus.pid‘

spawnd 11 / 12

8.3.3 systemd

For systemd you’ll have to create an appropriate configuration unit. Copy

[Unit]
Description=TACACS+ Service
After=syslog.target

[Service]
ExecStart=/usr/local/sbin/tac_plus -f /usr/local/etc/tac_plus.cfg
KillMode=process
Restart=always
ExecReload=/bin/kill -HUP $MAINPID

[Install]
WantedBy=multi-user.target

to /etc/systemd/system/tac_plus.service, then enable and start the service:

sudo systemctl enable tac_plus.service
sudo systemctl start tac_plus.service

9 Copyrights and Acknowledgements

Please see the source for copyright and licensing information of individual files.

• Portions of the parsing code are taken from Cisco’s tac_plus developers kit which is distributed under the following
license:
Copyright (c) 1995-1998 by Cisco systems, Inc.

Permission to use, copy, modify, and distribute this software for any purpose and without fee is hereby granted, provided that
this copyright and permission notice appear on all copies of the software and supporting documentation, the name of Cisco
Systems, Inc. not be used in advertising or publicity pertaining to distribution of the program without specific prior permission,
and notice be given in supporting documentation that modification, copying and distribution is by permission of Cisco Systems,
Inc.

Cisco Systems, Inc. makes no representations about the suitability of this software for any purpose. THIS SOFTWARE IS
PROVIDED ``AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMI-
TATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

• The code written by Marc Huber is distributed under the following license:
Copyright (C) 1999-2022 Marc Huber (Marc.Huber@web.de). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:

This product includes software developed by Marc Huber (Marc.Huber@web.de).

Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear.

THIS SOFTWARE IS PROVIDED ``AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ITS AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

mailto:Marc.Huber@web.de
mailto:Marc.Huber@web.de

spawnd 12 / 12

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS IN-
TERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

	Introduction
	Download

	Operation
	Command line syntax

	Configuration file syntax
	Railroad Diagrams

	Signals
	Load balancing algorithm
	Event mechanism selection
	Sample configuration
	Startup examples
	Manual startup
	Startup on demand
	inetd
	xinetd
	launchd

	Startup at system boot
	Init scripts
	launchd
	systemd

	Copyrights and Acknowledgements

