
MAVIS - Modular Attribute-Value Interchange System i

MAVIS - Modular Attribute-Value Interchange System

MAVIS - Modular Attribute-Value Interchange System ii

COLLABORATORS

TITLE :

MAVIS - Modular Attribute-Value Interchange
System

ACTION NAME DATE SIGNATURE

WRITTEN BY Marc Huber November 12, 2017

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

MAVIS - Modular Attribute-Value Interchange System iii

Contents

1 Introduction 1

1.1 Download . 1

2 Design overview 1

3 Authentication setups 1

4 Sample setups 2

5 Configuration Syntax 2

5.1 Standard Configuration Directives . 3

5.2 Backend Module Configuration . 4

5.2.1 The anonftp module . 5

5.2.1.1 Configuration directives . 5

5.2.1.2 Railroad Diagram . 5

5.2.2 The asciiftp module . 5

5.2.2.1 Configuration directives . 6

5.2.2.2 Railroad Diagram . 6

5.2.3 The auth module . 6

5.2.3.1 Configuration Syntax . 6

5.2.3.2 Railroad Diagram . 7

5.2.4 The cache module . 7

5.2.4.1 Configuration directives . 7

5.2.4.2 Railroad Diagram . 7

5.2.5 The external module . 8

5.2.5.1 Configuration directives . 8

5.2.5.2 Railroad Diagram . 9

5.2.6 The group module . 9

5.2.6.1 Configuration directives . 9

5.2.7 The limit module . 10

5.2.7.1 Configuration directives . 10

5.2.7.2 Railroad Diagram . 10

5.2.8 The log module . 10

5.2.9 The PAM module . 10

5.2.9.1 Configuration directives . 11

5.2.9.2 Railroad Diagram . 11

5.2.10 The remote module . 11

5.2.10.1 Configuration directives . 12

MAVIS - Modular Attribute-Value Interchange System iv

5.2.10.2 Railroad Diagram . 13

5.2.10.3 Possible legal restrictions . 13

5.2.11 The system module . 13

5.2.11.1 Configuration directives . 13

5.2.11.2 Railroad Diagram . 14

5.2.12 The userdb module . 14

5.2.12.1 Configuration directives . 14

5.2.12.2 Railroad Diagram . 15

5.2.12.3 Example . 15

5.2.13 The tee module . 16

5.2.13.1 Configuration directives . 16

5.2.13.2 Railroad Diagram . 16

5.2.14 The null module . 17

5.3 MAVIS Scripting Language . 17

6 Testing your MAVIS configuration 21

7 Environmental Variables 21

8 Copyrights and Acknowledgements 21

MAVIS - Modular Attribute-Value Interchange System 1 / 22

1 Introduction

The MAVIS libraries provide a modular and extensible protocol for authorization and authentication tasks. Authorization/au-
thentication modules are stackable and configurable. Both synchronous and asynchronous operation modes are available.

The modules are reentrant, but not thread-save.

1.1 Download

Source and documentation are available from http://www.pro-bono-publico.de/projects/.

2 Design overview

The MAVIS system consists of the MAVIS library (libmavis.so) and various MAVIS modules (libmavis_*.so). The
library glues the modules together, sends requests to and receives answers from the modules. A module may answer (or modify)
a request or pass it on to the module loaded later. It may intercept and modify the response from that module.

Example: Consider the following set-up:

An incoming request, e.g. for FTP authentication, first reaches the log module, which simply passes it on to the limit module.
The limit module checks the IP address of the client and rejects the request if that address is blacklisted. Otherwise, the request
is passed on to the auth module, which leaves it alone and passes it on to the cache module. If the request is not cached within
the cache module it is passed on to the pam module, which sets some attribute-value pairs and sends the request back to the
cache module. The cache module in turn adds the request data to its cache database and passes it back the auth module for
authentication checking. [Remaining steps omitted.]

--. .-->
| |

.===|===<log>==|===.
| | log -----’ |
| | request <----. |
>===|===<limit>==|===<
| ’--> client IP ------(YES)------> reject ----------->| | | |
| .--- blacklisted? .---> request | |
| | | | |
| (NO) (YES)-- add IP to --(NO)--’ |
| | blacklist? <-------. |
>===|===<auth>===|===<
| | verify -----’ |
| | authentication <----. |
>===|===<cache>==|===<
| ’--> answer for request ---(YES)---> answer request -->| | |
| .--- already cached? | |
| | | |
| (NO) cache -----’ |
| | request <----. |
>===|===<pam>==|===<
| ’--> retrieve authentication information from ---------’ |
| PAM sub-system and system files |
’--’

3 Authentication setups

Some MAVIS modules have both synchronous and asynchronous operation modes. For low and medium performance applica-
tions it’s sufficient to have one authentication daemon processing all incoming requests, with all the MAVIS modules utilized by

http://www.pro-bono-publico.de/projects/

MAVIS - Modular Attribute-Value Interchange System 2 / 22

mavisd operating synchronously. However, this introduces a serialization of all queries, causing requests that could immediately
be answered by e.g. the limit or cache module to be deferred until database queries got processed. One possible solution to rem-
edy this is to add one or more secondary authentication daemon for asynchronous processing of queries for synchronous-only
modules. The remote module automatically distributes queries between the configured MAVIS daemons.

4 Sample setups

1. Stand alone setup: Authentication requests are processed synchronously. Only recommended for low-latency modules
where no common database is required, e.g. the anonftp module.

.-----------.
.-----------. |

.-----------. |-|
| Client |-| |
|-----------| | |
| [log] | |-’
| [...] |-’
‘-----------’

2. Remote authentication setup: Authentication request processing is done asynchronous by mavisd. Recommended for
medium-latency modules or modules that require access to shared data, e.g. the limit or cache module.

.------------. .-----------.
.------------. |<===>| mavisd |

.------------. |<=====>|-----------|
Client	<=======>	[log]	
------------		-’	[limit]
[remote]	-’	[auth]	
‘------------’ | [cache] |

| [...] |
‘-----------’

3. Remote authentication setup with redundancy: Recommended for high-latency modules that are only capable of syn-
chronous request processing, high- performance setups or where redundancy is desired, e.g. suitable for database access
modules.

.------------. .------------. .-----------.
.------------. |<===>| mavisd |<=======>| mavisd |

.------------. |<=====>|------------| .-----------.-|
| Client |<=======>| [log] |<=====>| mavisd | |
|------------| |-’ | [limit] | |-----------| |
| [remote] |-’ | [auth] | | [log] |-’
‘------------’ | [cache] | | [...] |

| [remote] | | [...] |
‘------------’ ‘-----------’

5 Configuration Syntax

MAVIS modules are configured within the context of the application utilizing them. There’s no special configuration file required
or even supported.

mavis module = moduleName { moduleConfig }

path = path

Railroad diagram: MavisDecl

MAVIS - Modular Attribute-Value Interchange System 3 / 22

5.1 Standard Configuration Directives

Top-level configuration directives common to all of the applications using the MAVIS interface are:

• include = config

Evaluates configuration file config.

• id = ID{ ... }

Defines a configuration section ID, which will be evaluated by a matching server process.

Standard configuration directives which may be used both at top-level and inside the ID sections are:

• alias = name { ... }

Defines an alias for the configuration directives inside the curly brackets.

• debug = Level ...

Level can be either a integer value or a sequence of debugging keywords, each of which may, optionally, start with + or -,
where + will enable debugging, and - will disable it. Supported keywords and their corresponding integer values are:

PARSE 1
AUTHOR 2
AUTHEN 4
ACCT 8
CONFIG 16
PACKET 32
HEX 64
LOCK 128
REGEX 256
ACL 512
RADIUS 1024
CMD 2049
BUFFER 4096
PROC 8192
NET 16384
PATH 32768
CONTROL 65536
INDEX 131072
AV 262144
MAVIS 524288

Not all of these debugging flags may have an actual effect. The flags are additive; use the special flag NONE to clear all flags,
use ALL to set all flags.

Debugging options may only be available when the package was configured with the --debug command line switch.

Example:

debug = ALL -PARSE -NET

• regex-match-case = (yes | no)

Enables/disables case-sensitive regex pattern matching for the current context. Default: no.

• syslog ident = Ident

Set the syslog(3) identity. Defaults to the programs basename.

• syslog level = Level

Set the syslog(3) level. Default: INFO.

MAVIS - Modular Attribute-Value Interchange System 4 / 22

• syslog facility = Facility

Set the syslog(3) facility. Default: UUCP.

• syslog default = (permit | deny)

Enables or disables implicit logging to syslog(3) (if supported). Default is permit.

Standard configuration directives which may be used inside the ID section of MAVIS enabled applications are:

• mavis path = Path

Add Path to the module search path.

• mavis module = ModuleName { ... }

This directive searchs for module ModuleName in the compiled-in and configured search paths. Alternatively to auto-search,
ModuleName may be an absolute path to a MAVIS module. The module will be loaded and will parse the configuration data
inside the curly brackets.

An actual configuration could look similar to:

syslog level = INFO
syslog facility = DAEMON

id = spawnd {
listen = { port = 21 }
debug = NET
background = no
spawn = { exec = /usr/local/libexec/ftpd }

}

id = ftpd {
debug = ACL AUTHEN
mavis path = /some/none/default/location

mavis module = tee {
path in = /tmp/av.in
path out = /tmp/av.out

}

mavis module = log {
}

mavis module = anonftp {
userid = 100
groupid = mail
home = /
root = /tmp/
incoming = /tmp/incoming/

}

acl testacl {
src = 127.0.0.1

}

lots of stuff missing here ...

}

5.2 Backend Module Configuration

The following modules are included in the distribution.

MAVIS - Modular Attribute-Value Interchange System 5 / 22

5.2.1 The anonftp module

This module implements anonymous FTP authentication. If the cache module is to be used, it has to be loaded after the
anonftp module, because the cache module will only cache FTP type queries compatible with the auth module, and queries
answered by the anonftp module aren’t.

5.2.1.1 Configuration directives

The following configuration directives are mandatory, unless a ftp user exists in the local password database, in which case that
information may be gathered from there:

• userid = UserID

• groupid = GroupID

• root = RootDirectory

• home = HomeDirectory

There’s one optional directive:

• upload = UploadPathRegex

By default, anonymous FTP uploads are denied. The upload directive specifies a POSIX regular expression where uploads
are permitted.

5.2.1.2 Railroad Diagram

mavis module = anonftp

{ user-id = usernameOrUID

group-id = groupnameOrUID

home = homeDirectory

root = rootDirectory

upload = uploadPath

script in

out

= { MavisAction }

}

Railroad diagram: AnonftpConf

5.2.2 The asciiftp module

This module implements FTP authentication via an ASCII file.

MAVIS - Modular Attribute-Value Interchange System 6 / 22

5.2.2.1 Configuration directives

• file = path

Authentication data is read from path. The generic syntax for individual configuration file lines is:

user:password:uid:gids:type:root:home[:certsubj]

Example file:

customer1:whatever:10000:10001:anon:/home/customers/customer1:/
customer2:whatever:10000:10002:anon:/home/customers/customer2:/:/C=DE/ST=...
admin:whatever:10000:10001,10002:real:/home/customers:/admin

This configuration directive is mandatory.

• userid (min | max) UserID

This directive specifies upper and lower UID limits.

• groupid (min | max) GroupID

This directive specifies upper and lower GID limits.

5.2.2.2 Railroad Diagram

mavis module = asciiftp

{ user-id min

max

= usernameOrUID

group-id min

max

= groupnameOrUID

file = asciiFtpFile

script in

out

= { MavisAction }

}

Railroad diagram: ASCIIftpConf

5.2.3 The auth module

This module implements the server side of plain text and certificate based authentication schemes.

The auth module is mandatory for most authentication to work. It needs to be loaded before any caching or database access
module, and it won’t work over remote links unless mavisd is configured with "transmit-password yes". The anonftp and,
depending on the backend, the external module are the only ones that doesn’t require this module to be loaded.

5.2.3.1 Configuration Syntax

The only configuration option available is

• authentication-mode =cert [sufficient | required]

This option may be used when authentication via digital certificates (currently supported by the system module) is used. If
the sufficient keyword is used, no additional password authentication is necessary. The required keyword makes
certificate authentication mandatory

MAVIS - Modular Attribute-Value Interchange System 7 / 22

5.2.3.2 Railroad Diagram

mavis module = auth

{ authmode = required

sufficient

script in

out

= { MavisAction }

}

Railroad diagram: AuthConf

5.2.4 The cache module

This module stores the most recently answered queries in RAM for faster processing of subsequent queries for the same data.
For most applications, it has to be loaded after the auth module.

5.2.4.1 Configuration directives

Available configuration directives are:

• expire [Type] = Seconds

Specifies the caching period for requests of type Type (or of all requests, if no type is given). No caching will be performed
unless this directive is given. Valid values for Type are: FTP, TACPLUS.

Example:

cache everything 100 seconds by default:
expire = 100
Don’t cache FTP requests:
cache expire FTP = 0

• purge-outdated = Seconds

Periodically, outdated entries have to be removed from the cache. By default, this happens every 300 seconds, but you may
specify a different garbage collection interval.

5.2.4.2 Railroad Diagram

mavis module = cache

{ purge period = seconds

expire FTP = seconds

script in

out

= { MavisAction }

}

Railroad diagram: CacheConf

MAVIS - Modular Attribute-Value Interchange System 8 / 22

5.2.5 The external module

This module implements an interface to external authentication programs. An authentication program is expected to read a list
of attribute-value pairs on stdin, and write the processed list (plus a result code) to stdout. The programs stderr output
will be logged to syslogd.

Sample authentication backends for the external module include various Perl scripts, e.g. for RADIUS and LDAP authen-
tication (see the mavis/perl/ directory), plus C backends. The latter are radmavis (for RADIUS authentication) and
pammavis (for PAM authentication, as an alternative to the PAM module). While those may not be as flexible and easily to
modify as the Perl scripts, they carry far fewer dependencies, and quite a lot of the usual attribute modifications can be performed
using scripts; see the Scripting section below.

Using the external module to interface to external authenticators is probably in most cases favourable to writing custom mod-
ules, as external authentication programs may be implemented as easy-to-deploy Perl programs. Plus, you’re likely to get get
parallelism for free.

Caveat Emptor
Chaining external modules in asynchronous mode may not work as expected. Just don’t do it.

5.2.5.1 Configuration directives

The following configuration directives are available:

• userid = UserID

Set user id of child process to UserID.

• groupid = GroupID

Set group id of child process to GroupID.

• home = Directory

Change to Directory before executing child process.

• childs (min | max) = Number

Set the minimum or maximum number of child processes (defaults: 4, 20).

• setenv Variable = Value

Set environment variables.

• exec = Path Arguments ...

Set path and arguments (including argv[0]) of the authentication program. It’s recommended to enclose the individual
arguments in double quotes if they contain non-alphanumeric characters.

MAVIS - Modular Attribute-Value Interchange System 9 / 22

5.2.5.2 Railroad Diagram

mavis module = external

{ user-id = usernameOrUID

group-id = groupnameOrUID

home = homeDirectory

childs min

max

= number

setenv name = value

exec = execFile
argument

script in

out

= { MavisAction }

}

Railroad diagram: ExternalConf

5.2.6 The group module

This module resolves numerical group IDs returned by a downstream backend to their corresponding ASCII names.

5.2.6.1 Configuration directives

The following configuration directives are available:

• resolve gid = (yes | no)

This tells the module to resolve the primary group id.

• resolve gids = (yes | no)

This tells the module to resolve the group access list.

• gid filter = [not] gid_start[-gid_end][,gid_start[-gid_end]]*

Establishes a filter on the GID MAVIS attribute. Example:

gid filter = 100,1000-1050

• gids filter = [not] gid_start[-gid_end][,gid_start[-gid_end]]*

Establishes a filter on the GIDS MAVIS attribute. Example:

gid filter = 100,1000-1050

• group filter = [not] regex[,regex]*

Establishes a filter on the GID MAVIS attribute after name resolving. Example:

group filter = /^com/

MAVIS - Modular Attribute-Value Interchange System 10 / 22

• groupx filter = [not] regex[,regex]*

Establishes a filter on the GIDS MAVIS attribute after name resolving. Example:

groups filter = /^com/

(regex syntax in these examples is PCRE, but standard POSIX will work, too.)

5.2.7 The limit module

This module implements limitations on the number of failed authentications per IP address.

5.2.7.1 Configuration directives

Available configuration directives are:

• blacklist time = Seconds

blacklist count = Count

This limits the number of failed authentication requests per client IP address to Count per Seconds interval. Subsequent requests
from the same client IP address will be rejected. This is disabled by default.

• purge-outdated = Seconds

Periodically, the module will start a garbage collection run in order to remove outdated data from its internal data structures.
This directive sets the garbage-collection period to Seconds (default: 300).

5.2.7.2 Railroad Diagram

mavis module = limit

{ purge period = seconds

blacklist time = seconds

count = number

script in

out

= { MavisAction }

}

Railroad diagram: LimitConf

5.2.8 The log module

This module performs query logging to syslogd. There are no configuration options.

5.2.9 The PAM module

This module implements an interface for FTP authentication via pluggable authentication modules (PAM). The PAM module
doesn’t support asynchronous operation; you might be better off using the external module in conjunction with the pammavis
program, giving you parallelism and a lot more flexibility for free.

PAMs that perform queries other than the standard username/password aren’t supported.

Please take care not to use PAM modules with login delays enabled. E.g., for the pam_unix module, configure your PAM
subsystem to use the nodelay (or whatever it’s called in your setup) option, e.g. in /etc/pam.conf:

MAVIS - Modular Attribute-Value Interchange System 11 / 22

mavis required pam_unix.so nodelay

or in /etc/pam.d/mavis (or whatever service you’ve specified, see below):

auth required pam_unix.so nodelay
account required pam_unix.so
password required pam_unix.so
session required pam_unix.so

On MacOS, the following should work:

auth required pam_opendirectory.so
account required pam_opendirectory.so
password required pam_opendirectory.so
session required pam_opendirectory.so

Pluggable Authentiation Modules
Configuring PAM correctly is pretty system specific. Do not assume that one of the examples above will work on your box. Have
a look at your existing PAM configurations instead, and read the documentation that comes with your system.

Programs utilizing this module may have to run under the user id of root if access to the shadow password file is required.

5.2.9.1 Configuration directives

Available configuration options are:

• chroot = (yes | no)

This activates a chroot environment for PAM users (default: yes). The chroot root directory is either the users’ home directory
or, if the home directory path contains a /./ sequence, the directory denoted by the path up to that sequence.

• service = Service

This specifies the service name to use for PAM initialization. It defaults to mavis.

5.2.9.2 Railroad Diagram

mavis module = pam

{ chroot = yes

no

service = string

script in

out

= { MavisAction }

}

Railroad diagram: PAMConf

5.2.10 The remote module

This module implements communication with mavisd.

MAVIS - Modular Attribute-Value Interchange System 12 / 22

5.2.10.1 Configuration directives

Available configuration options are:

• local address = IPAddress

Set address for outgoing IP connections.

• rebalance = Count

Re-balances peers after Count requests. May be used to reactivate dead peers. Use with care.

Default: unset.

• server ={ ... }

Specifies a server mavisd runs on. Inside the curly brackets, the following directives are permitted:

– path = UnixPath

– address = IPAddress

– port = UDPPort

– blowfish key = Key

– blowfish keyfile = KeyFile

These set remote connection endpoint and blowfish key. This directive may be used multiple times. Communication will be
Blowfish encrypted if a key is specified.

Communication via PF_UNIX sockets may only work if the host system supports anonymous binds for that protocol family.
This works on Linux, which supports an abstract namespace which is independent of the file system, but may or may not be an
option on other operating systems.

• timeout = Seconds

Sets the maximum number of seconds to wait for a response from one of the remote peers. Defaults to: 5.

• tries = Count

Sets the maximum number of attempts to get a response from one of the remote peers. Default is 6 tries.

MAVIS - Modular Attribute-Value Interchange System 13 / 22

5.2.10.2 Railroad Diagram

mavis module = remote

{ local address = ipAddress

rebalance = number

timeout = seconds

tries = number

dst = { path = unixPath

address = ipAddress

port = port

blowfish key = key

keyfile = keyFile

script in

out

= { MavisAction }

}

script in

out

= { MavisAction }

}

Railroad diagram: RemoteConf

5.2.10.3 Possible legal restrictions

This module utilizes Bruce Schneier’s Blowfish algorithm. Your government may have choosen to implement ridiculous legal
restrictions regarding use or export of cryptographic software. Take care.

5.2.11 The system module

This module implements FTP authentication via UNIX system accounts or accounts defined in UNIX password-style files.
Optionally, certificate based authentication is available. Please note that the pam module may be a better choice for most
installations.

Programs utilizing this module will most likely have to run under the user id of root if access to the shadow password file is
required.

5.2.11.1 Configuration directives

• chroot = (yes | no)

This activates a chroot environment for system users (default: yes). The chroot root directory is either the users home directory
or, if the home directory path contains a /./ sequence, the directory denoted by the path up to that sequence.

• ftpusers file = Path

Select ftpusers file (default: /etc/ftpusers).

• passwd file = Path

Select UNIX password file. If this is omitted, the systems UNIX accounts are used. On *BSD systems you may wish to set
path to /etc/master.passwd.

MAVIS - Modular Attribute-Value Interchange System 14 / 22

• shells file = Path

Select shells file (default: /etc/shells).

• sslusers file = Path

Select sslusers file (default: /etc/ssl.users).

The sslusers file is compatible to the one proposed by Tim Hudson (tjh@cryptsoft.com) in his SSLeay patches to the BSD ftp
daemon. It contains lines of the form

user1,user2:/C=US/....

where user1 and user2 are user names, and the /C=US/.... part is a certificate subject.

In case you’re unfamiliar with OpenSSL: you may retrieve the certificate subject of a certificate cert.pem using

openssl x509 -subject -noout -in cert.pem

• check (ftpusers | shells | sslusers) = (yes | no)

Enables checking of the specified file type.

5.2.11.2 Railroad Diagram

mavis module = system

{ chroot = yes

no

passwd = passwdFile

ftpusers = ftpUsersFile

shells = shellsFile

sslusers = sslUsersFile

check = ftpusers

shells

sslusers

script in

out

= { MavisAction }

}

Railroad diagram: SystemConf

5.2.12 The userdb module

This module can be used to define static users, e.g. for FTP. It requires the auth module for user authentication.

5.2.12.1 Configuration directives

Syntax for defining users is user = UserName { ... }. The following configuration directives inside the curly brackets are
mandatory for FTP, but not enforced:

• userid = UserID

mailto:tjh@cryptsoft.com

MAVIS - Modular Attribute-Value Interchange System 15 / 22

• groupid = GroupID

• home = HomeDirectory

• password = ((clear | crypt) PasswordString) | mavis

clear indicates a clear-text password, while crypt tells the parser that PasswordString is DES (or MD5) encrypted. The
mavis keyword expects the password to be set by a downstream module.

Optional directives are:

• root = RootDirectory

• cert subject = CertSubject

Arbitrary other MAVIS attributes may be set with

• set AttributeName = Value

5.2.12.2 Railroad Diagram

mavis module = userdb

{ userid = userID

groupid = groupID

home = homeDirectory

password = clear cleartextPassword

crypt hashedPassword

mavis

root = rootDirectory

cert subject = certSubject

set attribute = value

}

Railroad diagram: UserDBConf

5.2.12.3 Example

The following is a valid configuration for ftpd which utilizes various MAVIS backends:

id = spawnd {
listen = { port = 21 }
spawn = { instances min = 1 }
background = no

}

id = ftpd {
mavis path = ../../mavis/obj.%O

mavis module = anonftp {
userid = 100
groupid = 100

MAVIS - Modular Attribute-Value Interchange System 16 / 22

root = /tmp/
home = /
upload = /tmp/incoming/

}
mavis module = auth {
}
mavis module = userdb {

user = test {
#password = clear test
password = crypt 1j/K5hgl2$vyCmLeqUzQmr9DdyPTn01.
root = /tmp/
home = /
userid = 100
groupid = 100

}
}
symlinks = all
check-uid = no
check-gid = no
check-perm = no

}

5.2.13 The tee module

This module is used for development only. It writes sent and received attribute-value pairs to disk in a format which may, for
example, be used to test external authenticators (see the description of the external module).

5.2.13.1 Configuration directives

Available configuration options are:

• userid = UserID

• groupid = GroupID

• mode = Mode

• path (in | out) Path

5.2.13.2 Railroad Diagram

mavis module = tee

{ user-id = usernameOrUID

group-id = groupnameOrUID

path in

out

= file

mode = octalMask

script in

out

= { MavisAction }

}

Railroad diagram: TeeConf

MAVIS - Modular Attribute-Value Interchange System 17 / 22

5.2.14 The null module

This module comes without any functionality on its own. It may however be used in conjunction with the scripting feature
described below.

5.3 MAVIS Scripting Language

All MAVIS modules in the distribution come with some basic scripting language support for modifying AV pair and/or module
behavior. Scripts can be called when entering or leaving a module and are defined using the script keyword.

Generic syntax for the scripting feature is:

script (in | out) ={ action+ }

Valid actions are:

• { action+ }

Defines an action block consisting of multiple actions.

• continue

Stops processing the remainder of the script and continues with regular module operation.

• return

Stops processing the remainder of the script and returns the currently set attributes to the caller.

• skip

Skips this module and continue with the next one.

• set attribute = value

Sets the specified MAVIS attribute. If the software was compiled with PCRE support (strongly recommended!), the strings $1
... $9 will be replaced with the substrings from the latest condition matching operation.

• unset attribute

Clears the specified MAVIS attribute.

• reset attribute

Resets the specified MAVIS attribute to its original value.

• toupper attribute

Converts the specified MAVIS attribute to upper case.

• tolower attribute

Converts the specified MAVIS attribute to lower case.

• eval condition

Evaluates condition, and populates the PCRE substring information vector ($1 ... $9).

• if (condition) action [else action]

Evaluates condition and executes one of the actions, if any.

Syntax for condition:

• ! condition

Boolean negation.

• condition && condition

Boolean AND.

MAVIS - Modular Attribute-Value Interchange System 18 / 22

• condition || condition

Boolean OR.

• attribute == (attribute | value)

Exact match.

• attribute != (attribute | value)

No exact match.

• attribute =~ regex

Exact match. Enclose regex in / for PCRE.

• attribute !~ regex

No exact match.

• defined (attribute)

TRUE if attribute is set, false else.

• undef (attribute)

TRUE if attribute is not set, false else.

At least the top-level condition needs to be enclosed in round brackets.

script in out = { MavisAction }

Railroad diagram: MavisScript

! MavisCond

(MavisCond)

MavisCond &&

||

MavisCond

defined

undef

(MavisAttribute)

MavisAttribute

MavisAttribute ==

!=

MavisAttribute

value

MavisAttribute =~

!~

regEx

Railroad diagram: MavisCond

MAVIS - Modular Attribute-Value Interchange System 19 / 22

continue

return

skip

if MavisCond MavisAction else MavisAction

set MavisAttribute = value

unset MavisAttribute

reset MavisAttribute

toupper MavisAttribute

tolower MavisAttribute

{ MavisAction }

Railroad diagram: MavisAction

Here’s a sample configuration for FTP authentication via RADIUS, using the radmavis binary, called via the external
module:

mavis module = external {
script in = {

if ($TYPE == FTP) {
Make sure $USER is a) lowercase and b) in user@realm format.
This isn’t mandatory; I just want to show how to do it:
tolower $USER
if ($USER =~ /^([^\\\\]+)\\\\(.*)$/)

set $USER = $2@$1
else if ($USER !~ /^([^@]+)@(.*)$/) {

eval ($USER =~ /^.*$/)
set $USER = $1@myrealm

}
}

}
script out = {

if ($TYPE == FTP && $PASSWORD == $DBPASSWORD) {
set $ROOT = /export/home
eval ($USER =~ /^.*$/)
set $HOME = /$1
set $UID = 100
set $GID = 100
set $GIDS = "100,102,129"
set $RESULT = ACK
Reset the username to the original value, or upstream
will complain:
reset $USER

}
}
exec = /usr/local/sbin/radmavis radmavis "authserver=localhost:1812:mYrAdIuSsEcReT"

}

Note that backslashes in regular expressions need to be doubled.

Likewise, the pammavis program may be used for authentication using PAM. Example for TACACS+:

MAVIS - Modular Attribute-Value Interchange System 20 / 22

mavis module = external {
script out = {

This is actually no longer necessary for recent versions
if ($TYPE == TACPLUS) {

if ($TACTYPE == AUTH && $PASSWORD == $DBPASSWORD || $TACTYPE == INFO) {
set $RESULT = ACK
If you’re working with "password = mavis" in user profiles
and have all users defined locally, there’s no need to set
any particular TACPROFILE value and you may omit the next
line:
set $TACPROFILE = "{ member = noc }"

}
}

}
exec = /usr/local/sbin/pammavis pammavis -s pamservicename
Optionally: If tac_plus only queries for attributes and we don’t
evaluate those set by pammavis, then there’s no use in calling the
latter at all. The "return" will continue with the "out" script:
script in = { if ($TYPE == TACPLUS && $TACTYPE == INFO) return }

}

As detailed in the PAM module section above, take care not to use a PAM service which implements login delays. The PAM
service can be selected using the -s pamservicename option and defaults to mavis. PAMs that perform queries other than
the standard username/password aren’t supported.

A more sophisticated (and complete) example for TACACS+:

id = spawnd { listen = { port = 49 } }

id = tac_plus {
mavis module = groups {
resolve gids = yes
groups filter = /^(guest|staff)$/
script out = {

copy the already filtered UNIX group access list to TACMEMBER
eval $GIDS =~ /^(.*)$/
set $TACMEMBER = $1

}
}
mavis module = external {
exec = /usr/local/sbin/pammavis pammavis -s mavis

}
user backend = mavis
login backend = mavis
host = global { address = 0.0.0.0/0 key = mykey }

group = staff {
service = shell {

default command = permit
default command = permit
set priv-lvl = 15

}
}
group = guest {
service = shell {

default command = deny
set priv-lvl = 15
cmd = show { permit .* }

}
}

}

MAVIS - Modular Attribute-Value Interchange System 21 / 22

Another example script emulates the anonftp module functionality:

mavis module = null {
script in = {

if ($TYPE == FTP && ($USER == ftp || $USER == anonymous)) {
set $RESULT = ACK
set $FTP_ANONYMOUS = TRUE
set $EMAIL = $PASSWORD
set $ROOT = /public/ftp
set $HOME = /
set $UID = 123
set $GID = 123
return

}
}

}

See mavis/mavis.h for a list of supported attributes.

6 Testing your MAVIS configuration

You’ll almost certainly want to validate that your backend configuration behaves as expected. You can do so using the mavist
est binary. Syntax is:

mavistest [options] <config> <id> <type> <user> [<password>]

Options:
-P (parse only)
-d <debuglevel> (set debug level)

Valid <type> values: FTP, TACPLUS

Sample usage: mavistest -d -1 /usr/local/etc/tac_plus.cfg tac_plus TACPLUS joe p4ssw0rd

7 Environmental Variables

Text enclosed in double quotes may make use of environment variables, e.g.:

filename = "${HOME}/log.txt"

The braces are required.

8 Copyrights and Acknowledgements

Please see the source for copyright and licensing information of individual files.

• The following applies if the software was compiled with TLS support:
This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit.

(http://www.openssl.org/)

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

http://www.openssl.org/
mailto:eay@cryptsoft.com

MAVIS - Modular Attribute-Value Interchange System 22 / 22

• If the software was compiled with PCRE (Perl Compatible Regular Expressions) support, the following applies:
Regular expression support is provided by the PCRE library package, which is open source software, written by Philip Hazel,
and copyright by the University of Cambridge, England.

(ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/).

• MD5 algorithm
The software uses the RSA Data Security, Inc. MD5 Message-Digest Algorithm.

• The Blowfish algorithm:
This software uses Bruce Schneier’s Blowfish algorithm.

• md5crypt:

"THE BEER-WARE LICENSE" (Revision 42):
<phk@login.dknet.dk> wrote this file. As long as you retain this notice you
can do whatever you want with this stuff. If we meet some day, and you think
this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp

• Portions of the parsing code are taken from Cisco’s tac_plus developers kit which is distributed under the following
license:
Copyright (c) 1995-1998 by Cisco systems, Inc.

Permission to use, copy, modify, and distribute this software for any purpose and without fee is hereby granted, provided that
this copyright and permission notice appear on all copies of the software and supporting documentation, the name of Cisco
Systems, Inc. not be used in advertising or publicity pertaining to distribution of the program without specific prior permission,
and notice be given in supporting documentation that modification, copying and distribution is by permission of Cisco Systems,
Inc.

Cisco Systems, Inc. makes no representations about the suitability of this software for any purpose. THIS SOFTWARE IS
PROVIDED ``AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMI-
TATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

• The code written by Marc Huber is distributed under the following license:
Copyright (C) 1999-2015 Marc Huber (Marc.Huber@web.de). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:

This product includes software developed by Marc Huber (Marc.Huber@web.de).

Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear.

THIS SOFTWARE IS PROVIDED ``AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ITS AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS IN-
TERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/
mailto:Marc.Huber@web.de
mailto:Marc.Huber@web.de

	Introduction
	Download

	Design overview
	Authentication setups
	Sample setups
	Configuration Syntax
	Standard Configuration Directives
	Backend Module Configuration
	The anonftp module
	Configuration directives
	Railroad Diagram

	The asciiftp module
	Configuration directives
	Railroad Diagram

	The auth module
	Configuration Syntax
	Railroad Diagram

	The cache module
	Configuration directives
	Railroad Diagram

	The external module
	Configuration directives
	Railroad Diagram

	The group module
	Configuration directives

	The limit module
	Configuration directives
	Railroad Diagram

	The log module
	The PAM module
	Configuration directives
	Railroad Diagram

	The remote module
	Configuration directives
	Railroad Diagram
	Possible legal restrictions

	The system module
	Configuration directives
	Railroad Diagram

	The userdb module
	Configuration directives
	Railroad Diagram
	Example

	The tee module
	Configuration directives
	Railroad Diagram

	The null module

	MAVIS Scripting Language

	Testing your MAVIS configuration
	Environmental Variables
	Copyrights and Acknowledgements

